精英家教网 > 高中数学 > 题目详情
18.已知随机变量X服从两点分布,且P(X=1)=0.6,设ξ=3X-2,那么Eξ=-0.2.

分析 求出P(X=1)=0.6,P(X=0)=0.4,从而求出EX,由Eξ=3EX-2,能求出结果.

解答 解:∵随机变量X服从两点分布,且P(X=1)=0.6,
∴P(X=0)=0.4,
∴EX=1×0.6+0×0.4=0.6,
设ξ=3X-2,
则Eξ=3EX-2=3×0.6-2=-0.2.
故答案为:-0.2.

点评 本题考查数学期望的求法,是中档题,解题时要认真审题,注意数学期望的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.计算下列极限:
(1)$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$);
(2)$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n}$);
(3)$\underset{lim}{n→∞}$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{1}{{2x-{x^2}}}$,则f(x)的值域是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的值域:
(1)y=$\frac{x-1}{2x+1}$;
(2)y=$\frac{{x}^{3}-1}{{x}^{3}+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a、b为正实数,且a+2b=3ab,若a+b-c≥0对于满足条件的a,b恒成立,则c的取值范围为(  )
A.(-∞,$1+\frac{{2\sqrt{2}}}{3}$]B.$(-∞,\frac{3}{2}+\sqrt{2}]$C.(-∞,6]D.(-∞,$3+2\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲、乙、丙、丁四位同学站成一排照相留念,则甲、乙不相邻的排法种数为(  )
A.6B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设y=f(t)是某港口水的深度关于时间t(时)的函数,其中0<t≤24,下表是该港口某一天从0至24时记录的时间t与水深y的关系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt-φ)的图象.根据上述数据,函数y=f(t)的解析式为(  )
A.y=12+3sin$\frac{πt}{6}$,t∈[0,24]B.y=12+3sin($\frac{πt}{6}$+π),t∈[0,24]
C.y=12+3sin$\frac{πt}{12}$,t∈[0,24]D.y=12+3sin($\frac{πt}{12}$+$\frac{π}{2}$),t∈[0,24]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若三棱锥的三条侧棱两两垂直,且侧棱长均为$\sqrt{3}$,则三棱锥的体积与其外接球体积之比是$\frac{\sqrt{3}}{9π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有下列命题
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1<3x”;
②命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
③若函数f(x)=(x+1)(x+a)为偶函数,则a=-1;
④若x>0,y>0且2x+y=1,则$\frac{1}{x}$+$\frac{1}{y}$的最小值是6
⑤设函数f(x)是定义在R上的周期为2的奇函数,当x∈[0,1]时,f(x)=x+1,则f($\frac{3}{2}$)=$\frac{3}{2}$
其中所有正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案