【题目】记无穷数列
的前
项中最大值为
,最小值为
,令
.
(1)若
,写出
,
,
,
的值;
(2)设
,若
,求
的值及
时数列
的前
项和
;
(3)求证:“数列
是等差数列”的充要条件是“数列
是等差数列”.
【答案】(1)
,(2)见解析(3)见解析
【解析】
(1)分别计算出
,
,
,
结合题意即可得b1,b2,b3,b4的值;
(2)由新定义,可得λ>0,考虑三种情况求得λ,检验可得所求λ;进而得到bn,由数列的分组求和,可得所求和;
(3)充分性易证,无论d为何值,始终有bn
,即可证得结果,必要性须分类证明.
解:(1) 因为
,所以
,
所以
,
(2)
,
当
时,
,无解;
当
时,
,无解;
当
时,
,解得
;
当
时,
无解,
此时
,
当
时,
,
所以当
时
递增,![]()
,
所以当
时,![]()
(3)必要性:数列
是等差数列,设其公差为
.
当
时
是递增数列;当
时
是常数列;当
时,
是递减数列;
都有
,
所以数列
是等差数列.
充分性:数列
是等差数列,设其公差为![]()
则
,
由题意知,
,
当
时,
对任意
都成立,
即
,所以
是递增数列,
,
所以
是公差为
的等差数列,
当
时,
,进而![]()
所以
是递减数列,
,
,
所以
是公差为
的等差数列
当
时,
,
因为
与
中至少有一个为
,所以二者都为
,
进而得
为常数列,
综上,充分性成立.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的参数方程;
(2)若曲线
与曲线
,
在第一象限分别交于
两点,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
:
过点
.
(1)求抛物线
的方程;
(2)设
为
轴上一点,
为抛物线上任意一点,求
的最小值;
(3)过抛物线
的焦点
,作相互垂直的两条弦
和
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的四个顶点组成的四边形的面积为
,且经过点
.
![]()
(1)求椭圆
的方程;
(2)若椭圆
的下顶点为
,如图所示,点
为直线
上的一个动点,过椭圆
的右焦点
的直线
垂直于
,且与
交于
两点,与
交于点
,四边形
和
的面积分别为
.求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过
的直线
交曲线
于
两点,交直线
于点
.判定直线
的斜率是否依次构成等差数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,且椭圆过点
.
(1)求椭圆
的标准方程;
(2)设直线
与
交于
,
两点,点
在
上,
是坐标原点,若
,判断四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园有个池塘,其形状为直角△ABC,
,AB的长为2百米,BC的长为1百米.
(1)若准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D、E、F,如图(1),使得
,
,在△DEF内喂食,求当△DEF的面积取最大值时EF的长;
(2)若准备建造一个荷塘,分别在AB、BC、CA上取点D、E、F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,记
,求△DEF边长的最小值及此时
的值.(精确到1米和0.1度)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com