精英家教网 > 高中数学 > 题目详情
已知点F1,F2分别是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F2且垂直于x轴的直线与C交于A,B两点,若△ABF1为等腰直角三角形,则该双曲线的离心率为(  )
A、
3
+1
B、
3
-1
C、
2
-1
D、
2
+1
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据题设条件,利用△ABF1是等腰直角三角形可知|AF2|=|F1F2|,可得
b2
a
=2c,由此能求出结果.
解答: 解:由△ABF1是等腰直角三角形可知|AF2|=|F1F2|,∴
b2
a
=2c
又∵c2=a2+b2
∴c2-a2-2ac=0
∴e2-2e-1=0,
∴e=1±
2

∵e>1
∴e=
2
+1.
故选D.
点评:本题考查双曲线的离心率的平方的求法,解题时要熟练掌握双曲线的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下课以后,教室里还剩下2位男同学和2位女同学.若他们按顺序走出教室,则第2位走的是男同学的概率是(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一门高射炮射击一次击中目标的概率是0.4,那么至少需要这样的高射炮多少门同时对某一目标射击一次,才能使该目标被击中的概率超过96%(提供的数据:lg2=0.30,lg3=0.48)(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,则
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
等于(  )
A、-
3
2
B、
3
2
C、0
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=Asin(2x+φ)(A>0,-
π
2
<φ<
π
2
)的部分图象如图所示,则f(0)=(  )
A、-2
B、-1
C、-
1
2
D、-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥的三个侧面与底面所成的二面角都相等,那么这个三棱锥顶点在底面三角形所在平面上射影O必是底面三角形的(  )
A、内心B、外心C、垂心D、重心

查看答案和解析>>

科目:高中数学 来源: 题型:

观察1,1+3,1+3+5,1+3+5+7的值;猜测1+3+5+…+(2n-1)的结果;用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=3
e1
-2
e2
b
=4
e1
-
e2
,其中
e1
=(1,0),
e2
=(0,1).
(1)求:
a
b

(2)求:|
a
+
b
|及
a
b
的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

同步练习册答案