精英家教网 > 高中数学 > 题目详情
3.函数y=x|lnx|的图象大致为(  )
A.B.C.D.

分析 通过定义域排除C,D,再取特殊值,x=$\frac{1}{e}$时,y=$\frac{1}{e}$>0,故排除A,问题得以解决.

解答 解:函数y=x|lnx|的定义域为(0,+∞),故排除C,D,
当x=$\frac{1}{e}$时,y=$\frac{1}{e}$>0,故排除A,
故选:B

点评 本题考查了函数图象的识别,关键时掌握函数的值域和定义域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某工艺品厂要设计一个如图Ⅰ所示的工艺品,现有某种型号的长方形材料如图Ⅱ所示,其周长为4m,这种材料沿其对角线折叠后就出现图Ⅰ的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为
S2,折叠后重合部分△ACP的面积为S1
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={-1,0,1,2},B={y|y=2x+1,x∈A},则A∪B中元素的个数是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}(a-x)$;
(3)求函数g(x)=|logax-1|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x),g(x)分别是R上的偶函数和奇函数,则下列结论正确的是(  )
A.f(x)+g(x)是奇函数B.f(x)-g(x)是偶函数C.f(x)•g(x)是奇函数D.f(x)•g(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={1,2,3,4},B={1,2},则满足条件B⊆C⊆A的集合C的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+$\frac{1}{2}$mx2-(m+1)x+1.
(1)若g(x)=f'(x),讨论g(x)的单调性;
(2)若f(x)在x=1处取得极小值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知2sinα+cosα=0,则sin2α-3cos2α-sin2α=(  )
A.-$\frac{17}{5}$B.-$\frac{17}{4}$C.-$\frac{16}{5}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中假命题是(  )
A.?x∈R,lgx=0B.?x∈R,sinx+cosx=$\sqrt{3}$
C.?x∈R,x2+1≥2xD.?x∈R,2x>0

查看答案和解析>>

同步练习册答案