13£®Ä³¹¤ÒÕÆ·³§ÒªÉè¼ÆÒ»¸öÈçͼ¢ñËùʾµÄ¹¤ÒÕÆ·£¬ÏÖÓÐijÖÖÐͺŵij¤·½ÐβÄÁÏÈçͼ¢òËùʾ£¬ÆäÖܳ¤Îª4m£¬ÕâÖÖ²ÄÁÏÑØÆä¶Ô½ÇÏßÕÛµþºó¾Í³öÏÖͼ¢ñµÄÇé¿ö£®Èçͼ£¬ABCD£¨AB£¾AD£©Îª³¤·½ÐεIJÄÁÏ£¬ÑØACÕÛµþºóAB'½»DCÓÚµãP£¬Éè¡÷ADPµÄÃæ»ýΪ
S2£¬ÕÛµþºóÖØºÏ²¿·Ö¡÷ACPµÄÃæ»ýΪS1£®
£¨¢ñ£©ÉèAB=xm£¬ÓÃx±íʾͼÖÐDPµÄ³¤¶È£¬²¢Ð´³öxµÄȡֵ·¶Î§£»
£¨¢ò£©ÇóÃæ»ýS2×î´óʱ£¬Ó¦ÔõÑùÉè¼Æ²ÄÁϵij¤ºÍ¿í£¿
£¨¢ó£©ÇóÃæ»ý£¨S1+2S2£©×î´óʱ£¬Ó¦ÔõÑùÉè¼Æ²ÄÁϵij¤ºÍ¿í£¿

·ÖÎö £¨¢ñ£©ÉèAB=xm£¬ÀûÓá÷ADP¡Õ¡÷CB'P£¬¹ÊPA=PC=x-y£¬½áºÏPA2=AD2+DP2£¬¼´¿ÉÓÃx±íʾͼÖÐDPµÄ³¤¶È£¬²¢Ð´³öxµÄȡֵ·¶Î§£»
£¨¢ò£©ÀûÓûù±¾²»µÈʽÇóÃæ»ýS2×î´óʱ£¬Éè¼Æ²ÄÁϵij¤ºÍ¿í£»
£¨¢ó£©ÇóÃæ»ý£¨S1+2S2£©£¬ÀûÓõ¼ÊýÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃ³ö×î´óʱ£¬Éè¼Æ²ÄÁϵij¤ºÍ¿í£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬AB=x£¬BC=2-x£¬
ÒòΪx£¾2-x£¬¹Ê1£¼x£¼2£®¡­£¨2·Ö£©
ÉèDP=y£¬ÔòPC=x-y£¬
ÒòΪ¡÷ADP¡Õ¡÷CB'P£¬¹ÊPA=PC=x-y£¬
ÓÉPA2=AD2+DP2£¬µÃ£¨x-y£©2=£¨2-x£©2+y2£¬$y=2£¨{1-\frac{1}{x}}£©£¬1£¼x£¼2$£®¡­£¨4·Ö£©
£¨¢ò£©¼Ç¡÷ADPµÄÃæ»ýΪS2£¬Ôò${S_2}=£¨{1-\frac{1}{x}}£©£¨{2-x}£©$¡­£¨5·Ö£©
=$3-£¨{x+\frac{2}{x}}£©¡Ü3-2\sqrt{2}$£¬
µ±ÇÒ½öµ±$x=\sqrt{2}¡Ê£¨{1£¬2}£©$ʱ£¬S2È¡µÃ×î´óÖµ£®¡­£¨7·Ö£©
¹Êµ±²ÄÁϳ¤Îª$\sqrt{2}m$£¬¿íΪ$£¨{2-\sqrt{2}}£©m$ʱ£¬S2×î´ó£®¡­£¨8·Ö£©
£¨¢ó£©${S_1}+2{S_2}=\frac{1}{2}x£¨{2-x}£©+£¨{1-\frac{1}{x}}£©£¨{2-x}£©=3-\frac{1}{2}£¨{{x^2}+\frac{4}{x}}£©$£¬1£¼x£¼2£®
ÓÚÊÇ$£¨{{S_1}+2{S_2}}£©'=-\frac{1}{2}£¨{2x-\frac{4}{x^2}}£©=\frac{{-{x^3}+2}}{x^2}=0$£¬¡à$x=\root{3}{2}$£®¡­£¨11·Ö£©
¹ØÓÚxµÄº¯Êý£¨S1+2S2£©ÔÚ$£¨{1£¬\root{3}{2}}£©$ÉϵÝÔö£¬ÔÚ$£¨{\root{3}{2}£¬2}£©$Éϵݼõ£¬
ËùÒÔµ±$x=\root{3}{2}$ʱ£¬S1+2S2È¡µÃ×î´óÖµ£®¡­£¨12·Ö£©
¹Êµ±²ÄÁϳ¤Îª$\root{3}{2}$m£¬¿íΪ$£¨{2-\root{3}{2}}£©$mʱ£¬S1+2S2×î´ó£®¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²é»ù±¾²»µÈʽ£¬µ¼Êý֪ʶµÄÔËÓã¬È·¶¨º¯ÊýµÄ±í´ïʽÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AD=1£¬¡ÏBAD=60¡ã£¬EΪCDµÄÖе㣮Èô$\overrightarrow{AC}$•$\overrightarrow{BE}$=$\frac{33}{32}$£¬ÔòABµÄ³¤Îª$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx+c£¬£¨a£¬b£¬c¾ùΪ·ÇÁãÕûÊý£©£¬ÇÒf£¨a£©=a3£¬f£¨b£©=b3£¬a¡Ùb£¬Ôòc=£¨¡¡¡¡£©
A£®16B£®8C£®4D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆËãÏÂÁи÷ʽµÄÖµ£º£¨Ð´³ö»¯¼ò¹ý³Ì£©
£¨1£©${£¨2\frac{3}{5}£©^0}+{2^{-2}}¡Á{£¨2\frac{1}{4}£©^{-\frac{1}{2}}}-{£¨0.01£©^{0.5}}$£»
£¨2£©$ln£¨e\sqrt{e}£©+{log_2}6+{log_{\frac{1}{2}}}3+{log_2}3•{log_3}4$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®É躯Êýf£¨x£©¶Ôx¡Ù0µÄʵÊýÂú×ã$f£¨x£©-2f£¨{\frac{1}{x}}£©=-3x+2$£¬ÄÇô$\int_1^2{f£¨x£©dx}$=2ln2-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªµÈ²îÊýÁÐ{an}£¬SnΪÆäǰnÏîºÍ£¬Èôa1=9£¬a3+a5=0£¬ÔòS6µÄֵΪ£¨¡¡¡¡£©
A£®6B£®9C£®15D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}{x^3}-£¨{2m+1}£©{x^2}+3m£¨{m+2}£©x+1$£¬ÆäÖÐmΪʵÊý£®
£¨¢ñ£©µ±m=-1ʱ£¬Çóº¯Êýf£¨x£©ÔÚ[-4£¬4]ÉϵÄ×î´óÖµºÍ×îСֵ£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªlg5=m£¬lg7=n£¬Ôòlog27=£¨¡¡¡¡£©
A£®$\frac{m}{n}$B£®$\frac{n}{1-m}$C£®$\frac{1-n}{m}$D£®$\frac{1+n}{1+m}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýy=x|lnx|µÄͼÏó´óÖÂΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸