精英家教网 > 高中数学 > 题目详情
3.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若$\overrightarrow{AC}$•$\overrightarrow{BE}$=$\frac{33}{32}$,则AB的长为$\frac{1}{4}$.

分析 由条件并结合图形可得到$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,$\overrightarrow{BE}=-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$,这样代入$\overrightarrow{AC}•\overrightarrow{BE}$进行数量积的运算即可得出$-\frac{1}{2}|\overrightarrow{AB}{|}^{2}+\frac{1}{4}|\overrightarrow{AB}|+1=\frac{33}{32}$,解该方程即可求出AB的长.

解答 解:根据条件:
$\overrightarrow{AC}•\overrightarrow{BE}=(\overrightarrow{AB}+\overrightarrow{AD})•(\overrightarrow{BC}+\overrightarrow{CE})$
=$(\overrightarrow{AB}+\overrightarrow{AD})•(-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD})$
=$-\frac{1}{2}{\overrightarrow{AB}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}+{\overrightarrow{AD}}^{2}$
=$-\frac{1}{2}|\overrightarrow{AB}{|}^{2}+\frac{1}{4}|\overrightarrow{AB}|+1$
=$\frac{33}{32}$;
∴$16|\overrightarrow{AB}{|}^{2}-8|\overrightarrow{AB}|+1=0$;
解得$|\overrightarrow{AB}|=\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 考查向量加法的平行四边形法则,向量加法、数乘的几何意义,相等向量和相反向量的概念,向量数量积的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,则sinβ=(  )
A.$\frac{1}{7}$B.±$\frac{1}{7}$C.$\frac{\sqrt{2}}{10}$D.±$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\left\{\begin{array}{l}{{x^2}-2x,x≥-1}\\{x+4,x<-1}\end{array}}$,若函数g(x)=f(x)-a有三个零点,则a的取值范围为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.满足{-1,0,1}?M⊆{-1,0,1,2,3,4}的集合M的个数是(  )
A.4个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线的焦点坐标为(-$\frac{1}{32}$,0),则抛物线的标准方程为(  )
A.x=-8y2B.y=-8x2C.x=-16y2D.y=-16x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知三个不等式:①ab<0;②$-\frac{c}{a}<-\frac{d}{b}$;③bc<ad,以其中两个为条件,余下的一个作为结论,则可以组成3个正确的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1,直线l:y=kx+t(k为常数,t≠0)与椭圆相交于A,B两点,记△AOB的面积为S(其中O为坐标原点),则函数S=f(t)的奇偶性为(  )
A.偶函数B.奇函数
C.非奇非偶函数D.奇偶性与k的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)在R上是增函数,且f(2)=0,则使f(x-2)>0成立的x的取值范围是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工艺品厂要设计一个如图Ⅰ所示的工艺品,现有某种型号的长方形材料如图Ⅱ所示,其周长为4m,这种材料沿其对角线折叠后就出现图Ⅰ的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为
S2,折叠后重合部分△ACP的面积为S1
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?

查看答案和解析>>

同步练习册答案