精英家教网 > 高中数学 > 题目详情
17.MOD(a.b)表示求a除以b的余数,若输入a=34,b=85,则输出的结果为(  )>
A.0B.17C.21D.34

分析 模拟执行程序框图,依次写出每次循环得到的a,b,m的值,当m=0时满足条件m=0,退出循环,输出a的值为17.

解答 解:模拟执行程序框图,可得
a=34,b=85
不满足条件a>b,c=34,a=85,b=34
m=MOD(85,34)=17,a=34,b=17
不满足条件m=0,m=MOD(34,17)=0,a=17,b=0,
满足条件m=0,退出循环,输出a的值为17.
故选:B.

点评 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a,b,m的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知$sinα=\frac{3}{5}$,则$sin(\frac{π}{2}+2α)$=(  )
A.$-\frac{12}{25}$B.$\frac{7}{25}$C.$\frac{12}{25}$D.$-\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程z=$\sqrt{1-{x}^{2}-{y}^{2}}$的几何意义表示空间中以原点为球心,以1为半径的上半球面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知点A(1,0),B(0,1),C(2sin(θ-$\frac{π}{4}$),cos(θ-$\frac{π}{4}$)),且|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|.
(1)求tan(θ-$\frac{π}{4}$)的值;
(2)若θ-$\frac{π}{4}$∈[0,$\frac{π}{2}$],求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂每年需要某种材料3000件,设该厂对该种材料的消耗是均匀的,该厂准备分若干次等量进货,每次进货需运费30元,且在用完时能立即进货,已知储存在仓库中的材料每件每年储存费为2元,而平均储存的材料量为每次进货量的一半,欲使一年的运费和仓库中储存材料的费用之和最省,每次进货量应为多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中所有正确的是①③④
①“p∧q”为真的一个必要不充分条件是“p∨q”为真
②若p:$\frac{1}{x}$>0,则¬p:$\frac{1}{x}$≤0
③若实数a,b满足$\sqrt{a}$+$\sqrt{b}$=1,则$\frac{1}{2}$≤a+b≤1
④数列{$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$}(n∈N*)的最大项为$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则$\overrightarrow{c}$=$-\frac{1}{8}\overrightarrow{a}$$+\frac{5}{8}\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且2Tn=4Sn-(n2+n),n∈N*
(1)证明:数列{an+1}为等比数列;
(2)设bn=$\frac{n+1}{{a}_{n}+1}$,比较b1+b2+…+bn与3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\frac{sin87°-cos63°cos60°}{cos27°}$等于(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案