精英家教网 > 高中数学 > 题目详情
14.若直线Ax+By+C=0左上方的点(x0,y0)满足Ax0+By0+C>0,则A•B的符号为负.

分析 判断出斜率的正负,从而求出AB的符号即可.

解答 解:首先,只有斜率为正的直线才谈得上左上方和右下方(斜率为负的直线则有左下方和右上方),
斜率为-$\frac{A}{B}$,所以A,B异号,
故答案为:负.

点评 本题考查二无一次不等式的几何意义,解题时要注意特殊值法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.集合A={0,|x|},B={1,0,-1},若A⊆B,则x=±1;A∪B={-1,0,1};∁BA={-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设z=3+4i(i是虚数单位),则$|z|+\overline{z}$=8-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y∈[$\frac{1}{3}$,1],则y+$\frac{x}{\sqrt{4{x}^{2}({y}^{2}+1)-4x+1}}$的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如表:
B校样本数据统计表
成绩(分)12345678910
人数(个)000912219630
(Ⅰ)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(Ⅱ) 记事件C为“A校学生计算机优秀成绩高于B校学生计算机优秀成绩”.假设7分或7分以上为优秀成绩,两校学生计算机成绩相互独立.根据所给样本数据,以事件发生的频率作为相应事件发生的概率,求C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P是双曲线C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与圆C2:x2+y2=a2+b2的一个交点,且∠PF1F2=60°,其中F1、F2分别为双曲线C1的左、右焦点,则双曲线C1的离心率为1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}{4-|8x-12|,1≤x≤2}\\{\frac{1}{2}f(\frac{x}{2}),x>2}\end{array}\right.$,则其图象上与函数g(x)=log6(-x)图象上关于y轴对称的点共有(  )组.
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知幂函数y=xa,a∈{-2,-1,-$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},其中奇函数的个数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算下列各式的值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)${\;}^{\frac{1}{2}}$+(0.2)-2×$\frac{3}{25}$;
(2)$-5{log_9}4+{log_3}\frac{32}{9}-{5^{{{log}_5}3}}$.

查看答案和解析>>

同步练习册答案