精英家教网 > 高中数学 > 题目详情
1.已知数列{an}中.a1=1,an=an+1•an+an+1,则{an}的通项公式为an=$\frac{1}{n}$.

分析 利用an=an+1•an+an+1,可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,确定{$\frac{1}{{a}_{n}}$}是以1为首项,1为公差的等差数列,即可求出{an}的通项公式.

解答 解:∵an=an+1•an+an+1
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∵a1=1,∴$\frac{1}{{a}_{1}}$=1,
∴{$\frac{1}{{a}_{n}}$}是以1为首项,1为公差的等差数列,
∴$\frac{1}{{a}_{n}}$=n,
∴an=$\frac{1}{n}$.
故答案为:an=$\frac{1}{n}$.

点评 本题考查数列的通项,考查等差数列的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在矩形ABCD中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{BC}$|=2,则向量$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AC}$的长度等于(  )
A.2$\sqrt{5}$B.4$\sqrt{5}$C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=x5+ax3+bx-4且f(-2)=-10,那么f(2)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知ax-y+2a+1=0,当a∈[-1,$\frac{1}{3}$]时,恒有y>0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在四面体A-BCD中,AC与BD互相垂直,且长度分别为2和3,平行于这两条棱的平面与边AB、BC、CD、DA分别相交于点E、F、G、H,记四边形EFGH的面积为y,设$\frac{BE}{AB}$=x,则(  )
A.函数f(x)的值域为(0,1]B.函数y=f(x)满足f(x)=f(2-x)
C.函数y=f(x)的最大值为2D.函数y=f(x)在(0,$\frac{1}{2}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120°,外圆半径为60cm,内圆半径为30cm.则制作这样一面扇面需要的布料为2826cm2(用数字作答,π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,从高为$200\sqrt{3}$米的气球(A)上测量铁桥(BC)的长,如果测得桥头B的俯角是60°,桥头C的俯角是30°,则桥BC长为400米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(1,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A、B是单位圆O上的点,且点B在第二象限,点C是圆O与x轴正半轴的交点,点A的坐标为$(\frac{3}{5},\frac{4}{5})$,若△AOB为正三角形.
(Ⅰ)若设∠COA=θ,求sin2θ的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

同步练习册答案