精英家教网 > 高中数学 > 题目详情
5.已知集合M={x|-1≤x<3,x∈R},N={-1,0,1,2,3},则M∩N=(  )
A.{-1,0,2,3}B.{-1,0,1,2}C.{0,1,2}D.{0,1,2,3}

分析 由M与N,求出两集合的交集即可.

解答 解:∵M={x|-1≤x<3,x∈R},N={-1,0,1,2,3},
∴M∩N={-1,0,1,2},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD(点A、C在第一象限),且M,N分别是AB,CD的中点.
(1)若AB⊥CD,求△FMN面积的最小值;
(2)设直线AC的斜率为kAC,直线BD的斜率为kBD,且kAC+4kBD=0,求证:直线AC过定点,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.全称命题“?x∈R,x2+5x=4”的否定是(  )
A.$?{x_0}∈R,{x_0}^2+5{x_0}=4$B.?x∈R,x2+5x≠4
C.$?{x_0}∈R,{x_0}^2+5{x_0}≠4$D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2-4x+2y-3=0和圆外一点M(4,-8).
(1)过M作圆C的切线,切点为D,E,圆心为C,求切线长及DE所在的直线方程;
(2)过M作圆的割线交圆于A,B两点,若|AB|=4,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的体积为(  )
A.$π+\frac{2}{3}$B.$π+\frac{1}{3}$C.$\frac{3}{4}π+\frac{2}{3}$D.$\frac{3}{4}π+\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.就某地居民的月收入调查了20000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).根据频率分布直方图可求得样本数据的中位数是(  )
A.2250B.2400C.2500D.10000

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数y=f(x)满足:f(x)+f′(x)>1,f(0)=2017,则不等式exf(x)-ex>2016(其中e为自然对数的底数)的解集为(  )
A.(2016,+∞)B.(-∞,0)∪(2016,+∞)C.(-∞,0)∪(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=sin(πx+φ)过点$({\frac{1}{6},1})$,则f(0)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$sinθcosθ=\frac{1}{2}$,则$tanθ-\frac{cosθ}{sinθ}$的值是(  )
A.-2B.0C.±2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案