精英家教网 > 高中数学 > 题目详情
17.定义在R上的函数y=f(x)满足:f(x)+f′(x)>1,f(0)=2017,则不等式exf(x)-ex>2016(其中e为自然对数的底数)的解集为(  )
A.(2016,+∞)B.(-∞,0)∪(2016,+∞)C.(-∞,0)∪(0,+∞)D.(0,+∞)

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f'(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)-ex>2016,
∴g(x)>2016,
又∵g(0)=e0f(0)-e0=2017-1=2016,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞),
故选:D.

点评 本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-ax(a∈R).
(1)函数f(x)在[2,3]上单调递减,求a的取值范围;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=2+\frac{4}{x},g(x)={2^x}$.
(1)设函数h(x)=g(x)-f(x),求函数h(x)在区间[2,4]上的值域;
(2)定义min(p,q)表示p,q中较小者,设函数H(x)=min{f(x),g(x)}(x>0),
①求函数H(x)的单调区间及最值;
②若关于x的方程H(x)=k有两个不同的实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|-1≤x<3,x∈R},N={-1,0,1,2,3},则M∩N=(  )
A.{-1,0,2,3}B.{-1,0,1,2}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点A(0,-2),B(0,2),P是平面上一动点,且满足$|{\overrightarrow{PB}}|•|{\overrightarrow{BA}}|=\overrightarrow{PA}•\overrightarrow{BA}$,设点P的轨迹是曲线C.
(1)求曲线C的方程;
(2)将直线AB绕点A逆时针旋转$θ(0<θ<\frac{π}{2})$得到AB',若AB'与曲线C恰好只有一个公共点D,求D点的坐标;
(3)过(2)中的D点作两条不同的直线DE、DF分别交曲线C于E、F,且DE、DF的斜率k1、k2满足k1•k2=3,求证:直线EF过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若${∫}_{0}^{a}$xdx=2,则常数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是奇函数又是增函数的是(  )
A.y=3xB.y=x2C.y=lnxD.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某学校举行的演讲比赛有七位评委,如图是评委们为某选手给出分数的茎叶图,根据规则去掉一个最高分和一个最低分.则此所剩数据的平均数和方差分别为(  )
A.84,4.84B.84,1.6C.85,4D.85,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(3)估计居民月均用水量的中位数(精确到0.01)

查看答案和解析>>

同步练习册答案