·ÖÎö £¨1£©ÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉ$|{\overrightarrow{PB}}|•|{\overrightarrow{BA}}|=\overrightarrow{PA}•\overrightarrow{BA}$µÃ$\sqrt{{x^2}+{{£¨y-2£©}^2}}=2+y$£¬»¯¼ò¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÌâÒâÖª¿ÉÉèAB'µÄ·½³ÌΪy=kx-2£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢»¯Îª£ºx2-8kx+16=0£¬¡÷=0£¬½âµÃk£®Ö±ÏßABÈÆµãAÄæÊ±ÕëÐýת$¦È£¨0£¼¦È£¼\frac{¦Ð}{2}£©$µÃµ½AB'£¬¼´¿ÉµÃ³ö£®
£¨3£©ÉèµãE¡¢FµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬ÓÉ£¨2£©ÖªD£¨-4£¬2£©£¬ÀûÓÃk1•k2=3£¬¿ÉµÃ$\frac{{{y_1}-2}}{{{x_1}+4}}•\frac{{{y_2}-2}}{{{x_2}+4}}=3$£¬ÓÉE¡¢FÔÚÇúÏßCÉÏ£¬$x_1^2=8{y_1}£¬x_2^2=8{y_2}$´úÈëÉÏʽÕûÀíµÃ£ºx1x2-4£¨x1+x2£©-176=0£¬Ö±ÏßEFµÄ·½³ÌΪ£º$y=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}£¨x-{x_1}£©+{y_1}$£¬´úÈ뻯¼ò¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉ$|{\overrightarrow{PB}}|•|{\overrightarrow{BA}}|=\overrightarrow{PA}•\overrightarrow{BA}$µÃ$\sqrt{{x^2}+{{£¨y-2£©}^2}}=2+y$£¬
»¯¼òµÃx2=8y£¬¼´ÇúÏßCµÄ·½³ÌÊÇx2=8y£®
£¨2£©ÓÉÌâÒâÖª¿ÉÉèAB'µÄ·½³ÌΪy=kx-2£¬
ÓÉ$\left\{{\begin{array}{l}{y=kx-2}\\{{x^2}=8y}\end{array}}\right.$ÏûÈ¥yµÃ£ºx2-8kx+16=0£¨¡ù£©£¬
¡à¡÷=64k2-64=0£¬¡àk=¡À1£¬
¡ßÖ±ÏßABÈÆµãAÄæÊ±ÕëÐýת$¦È£¨0£¼¦È£¼\frac{¦Ð}{2}£©$µÃµ½AB'£¬
¡àk=-1´úÈ루¡ù£©Ê½½âµÃx=-4£¬¡ày=2£¬
¡àµãDµÄ×ø±êÊÇ£¨-4£¬2£©£®
£¨3£©ÉèµãE¡¢FµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬ÓÉ£¨2£©ÖªD£¨-4£¬2£©£¬
¡ßk1•k2=3£¬¡à$\frac{{{y_1}-2}}{{{x_1}+4}}•\frac{{{y_2}-2}}{{{x_2}+4}}=3$£¬
¡ßE¡¢FÔÚÇúÏßCÉÏ£¬¡à$x_1^2=8{y_1}£¬x_2^2=8{y_2}$´úÈëÉÏʽÕûÀíµÃ£ºx1x2-4£¨x1+x2£©-176=0£¬
Ö±ÏßEFµÄ·½³ÌΪ£º$y=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}£¨x-{x_1}£©+{y_1}$£¬¼´$y=\frac{{{x_1}+{x_2}}}{8}£¨x-{x_1}£©+\frac{x_1^2}{8}=\frac{{{x_1}+{x_2}}}{8}x-\frac{{{x_1}{x_2}}}{8}$£¬
¡à$y=\frac{{{x_1}+{x_2}}}{8}x-\frac{{4£¨{x_1}+{x_2}£©+176}}{8}$£¬¼´$y=\frac{{{x_1}+{x_2}}}{8}£¨x-4£©-22$£¬
¡àÖ±ÏßEF¹ý¶¨µã£¨4£¬-22£©
µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢Ö±Ïß·½³Ì¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | -5»ò5 | C£® | 1 | D£® | 1»ò-1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $¦Ð+\frac{2}{3}$ | B£® | $¦Ð+\frac{1}{3}$ | C£® | $\frac{3}{4}¦Ð+\frac{2}{3}$ | D£® | $\frac{3}{4}¦Ð+\frac{1}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| x | |||||
| $\frac{1}{2}$x+$\frac{¦Ð}{6}$ | |||||
| y |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨2016£¬+¡Þ£© | B£® | £¨-¡Þ£¬0£©¡È£¨2016£¬+¡Þ£© | C£® | £¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£© | D£® | £¨0£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $x=¡À\frac{{\sqrt{3}}}{3}y$ | B£® | $y=¡À\frac{{\sqrt{3}}}{3}x$ | C£® | $y=¡À\frac{{\sqrt{3}}}{2}x$ | D£® | $x=¡À\frac{{\sqrt{3}}}{2}y$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com