精英家教网 > 高中数学 > 题目详情
1.袋中有大小形状相同的红球,黑球各一个,现依次有放回的随机摸去3次,每次摸取一球,若摸到红球时得2分,摸到黑球时得1分,则3次摸球所得总分为5的概率为$\frac{3}{8}$.

分析 先求出基本事件总数为:n=23=8,再求出3次摸球所得总分为5包含的基本事件个数m=${C}_{3}^{1}{C}_{2}^{2}$=3,由此能求出3次摸球所得总分为5的概率.

解答 解:∵袋中有大小形状相同的红球,黑球各一个,
现依次有放回的随机摸去3次,每次摸取一球,
∴基本事件总数为:n=23=8,
∵摸到红球时得2分,摸到黑球时得1分,
∴3次摸球所得总分为5包含的基本事件个数m=${C}_{3}^{1}{C}_{2}^{2}$=3,
∴3次摸球所得总分为5的概率p=$\frac{3}{8}$.
故答案为:$\frac{3}{8}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上任取一个数x,则函数f(x)=sin2x的值不小于$\frac{1}{2}$的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点A(0,-2),B(0,2),P是平面上一动点,且满足$|{\overrightarrow{PB}}|•|{\overrightarrow{BA}}|=\overrightarrow{PA}•\overrightarrow{BA}$,设点P的轨迹是曲线C.
(1)求曲线C的方程;
(2)将直线AB绕点A逆时针旋转$θ(0<θ<\frac{π}{2})$得到AB',若AB'与曲线C恰好只有一个公共点D,求D点的坐标;
(3)过(2)中的D点作两条不同的直线DE、DF分别交曲线C于E、F,且DE、DF的斜率k1、k2满足k1•k2=3,求证:直线EF过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是奇函数又是增函数的是(  )
A.y=3xB.y=x2C.y=lnxD.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列判断中,正确的有(  )
①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
③$\left\{{\begin{array}{l}{x>1}\\{y>2}\end{array}}\right.$是$\left\{{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}}\right.$的充要条件;
④“am2<bm2”是“a<b”的必要不充分条件.
A.①②B.①③C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某学校举行的演讲比赛有七位评委,如图是评委们为某选手给出分数的茎叶图,根据规则去掉一个最高分和一个最低分.则此所剩数据的平均数和方差分别为(  )
A.84,4.84B.84,1.6C.85,4D.85,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,P为△ABC内一点,且满足△ABC∽△CPB,∠ABC=∠CPB=90°,$AB=2\sqrt{3}$,BC=2,则PA=(  )
A.7B.$\sqrt{5}$C.$\sqrt{7}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={-2,-1,0,1,2},B={x|x2+2x<0},则A∩B=(  )
A.{1,2}B.{-2,-1}C.{-1}D.{-2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,A,B,C的对边分别为a,b,c,若2(a2+c2)-ac=2b2,则sinB=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{15}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案