精英家教网 > 高中数学 > 题目详情
3.如图,梯形ABCD中,AB∥CD,AB=3CD.
(1)求证:$\overrightarrow{BC}$=-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$;
(2)若AB=3,AD=2,$\overrightarrow{AD}$•$\overrightarrow{BC}$=1,求$\overrightarrow{AC}$•$\overrightarrow{BD}$的值.

分析 (1)利用向量的三角形法则进行证明;
(2)将所求利用梯形的各边对应的向量表示,然后进行数量积的运算即可.

解答 (1)证明:因为梯形ABCD中,AB∥CD,AB=3CD.
所以$\overrightarrow{BC}$=$\overrightarrow{AC}-\overrightarrow{AB}$=$\overrightarrow{AD}+\overrightarrow{DC}-\overrightarrow{AB}$=$\overrightarrow{AD}+\frac{1}{3}\overrightarrow{AB}-\overrightarrow{AB}$=-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$;
(2)解:因为AB=3,AD=2,$\overrightarrow{AD}$•$\overrightarrow{BC}$=1,
则$\overrightarrow{AC}$•$\overrightarrow{BD}$=$(\overrightarrow{AB}+\overrightarrow{BC})•(\overrightarrow{BA}+\overrightarrow{AD})$=$-{\overrightarrow{AB}}^{2}$$+\overrightarrow{AB}•\overrightarrow{AD}$$+\overrightarrow{BC}•\overrightarrow{BA}+\overrightarrow{BC}•\overrightarrow{AD}$
=-9+1+$\overrightarrow{AB}•(\overrightarrow{AD}-\overrightarrow{BC})$=-8+$\overrightarrow{AB}•\frac{2}{3}\overrightarrow{AB}$=-8+6=-2.

点评 本题考查了平面向量的运算,包括加减运算和数量积运算;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,则第四个球的最高点与桌面的距离(  )
A.2+$\frac{{2\sqrt{6}}}{3}$B.$\frac{{2\sqrt{6}}}{3}$C.1+$\frac{{2\sqrt{6}}}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线$\sqrt{2}$ax+by=$\sqrt{3}$(a,b是实数)与圆O:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是等边三角形,点P(a,b)是以点M(0,$\sqrt{2}$)为圆心的圆M上的任意一点,则圆M的面积的最大值为(6+4$\sqrt{2}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为60°的两个单位向量,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,($\sqrt{3}$+1)acosB-2bcosA=c
(1)求$\frac{tanA}{tanB}$的值;
(2)若a=$\sqrt{6}$,B=$\frac{π}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)的定义域为{x∈R|x≠1},对定义域中的任意的x,都有f(2-x)=f(x),且当x<1时,f(x)=2x2-x,那么当x>1时,f(x)的递减区间是(  )
A.$[\frac{5}{4},+∞)$B.$(1,\frac{5}{4}]$C.$[\frac{7}{4},+∞)$D.$(1,\frac{7}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C:x2+y2+ax-4=0上存在两点关于直线x-2y+3=0对称,则实数a的值(  )
A.8B.-4C.6D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{{\begin{array}{l}{{3^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$,若f(x0)>0,则x0的取值范围是x0>1或x0≤0.

查看答案和解析>>

同步练习册答案