精英家教网 > 高中数学 > 题目详情
2.如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(1)求角B的大小;
(2)若A=$\frac{π}{2}$,D为△ABC外一点,DB=2,DC=1,求四边形ABCD面积的最大值.

分析 (1)由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知等式可得cosBsinC=sinBsinC,结合sinC>0,可求tanB=1,根据范围B∈(0,π),可求B的值.
(2)由余弦定理可得BC2=5-4cosD,由△ABC为等腰直角三角形,可求${S_{△ABC}}=\frac{5}{4}-cosD$,S△BDC=sinD,由三角函数恒等变换的应用可求${S_{ABCD}}=\frac{5}{4}+\sqrt{2}sin({D-\frac{π}{4}})$,利用正弦函数的图象和性质可求最大值.

解答 解:(1)∵在△ABC中,a=b(sinC+cosC).
∴有sinA=sinB(sinC+cosC),
∴sin(B+C)=sinB(sinC+cosC),
∴cosBsinC=sinBsinC,sinC>0,
则cosB=sinB,即tanB=1,
∵B∈(0,π),
∴则$B=\frac{π}{4}$.
(2)在△BCD中,BD=2,DC=1,
∴BC2=12+22-2×1×2×cosD=5-4cosD,
又∵$A=\frac{π}{2}$,
则△ABC为等腰直角三角形,${S_{△ABC}}=\frac{1}{2}×BC×\frac{1}{2}×BC=\frac{1}{4}B{C^2}=\frac{5}{4}-cosD$,
又∵${S_{△BDC}}=\frac{1}{2}×BD×DCsinD=sinD$,
∴${S_{ABCD}}=\frac{5}{4}-cosD+sinD=\frac{5}{4}+\sqrt{2}sin({D-\frac{π}{4}})$,
当$D=\frac{3π}{4}$时,四边形ABCD的面积最大值,最大值为$\frac{5}{4}+\sqrt{2}$.

点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=2x-2,数列{an}的前n项和为Sn,点Pn(n,Sn)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若b1=1,bn+1=bn+an+2(n∈N*),求bn
(3)记cn=$\root{4}{\frac{1}{{b}_{n}}}$(n∈N*),试证c1+c2+…+c2011<89.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为$\frac{4}{5}$.现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数:
907  966  191  925  271  932  812  458  569  683
031  257  393  527  556  488  730  113  537  989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为(  )
A.$\frac{4}{5}$B.$\frac{18}{20}$C.$\frac{112}{125}$D.$\frac{17}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+|2x-a|(x∈R).
(1)当a>-2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[-1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$({x+\frac{1}{x}}){({2x-\frac{1}{x}})^5}$是展开式的常数项为(  )
A.120B.40C.-40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?m∈[0,1],x+$\frac{1}{x}≥{2^m}$”的否定形式是(  )
A.$?m∈[{0,1}],x+\frac{1}{x}<{2^m}$B.$?m∈[{0,1}],x+\frac{1}{x}≥{2^m}$C.$?m∈[{0,1}],x+\frac{1}{x}≤{2^m}$D.$?m∈[{0,1}],x+\frac{1}{x}<{2^m}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且直线x=1与椭圆相交所得弦长为$\sqrt{3}$.
(1)求椭圆的方程;
(2)若在y轴上的截距为4的直线l与椭圆分别交于A,B两点,O为坐标原点,且直线OA,OB的斜率之和等于2,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点(3,4)不在不等式y≤3x+b表示的区域内,而点(4,4)在此区域内,则实数b的取值范围是[-8,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y>5}\\{x-y<2}\\{x<7}\end{array}\right.$,则该单位集合栽种这两种树的棵树最多为12.

查看答案和解析>>

同步练习册答案