精英家教网 > 高中数学 > 题目详情
(1)将一个长为18cm的线段随机地分成三段,则这三段能够组成一个三角形的概率是多少?探索一个任意长的线段随机地分成三段,则这三段能够组成一个三角形的概率是多少?
(2)已知O为正方形ABCD的中心,现在正方形内随机地取一点P,求使△OPA为钝角三角形的概率.
考点:几何概型
专题:应用题,概率与统计
分析:(1)先设线段分成三段中两段的长度分别为x、y,分别表示出线段随机地折成3段的x,y的约束条件和3段构成三角形的条件,再画出约束条件表示的平面区域,代入几何概型概率计算公式,即可求出构成三角形的概率.
(2)△OPA为钝角三角形的概率为
S△AEF+S半圆EOF+S△BCD
S正方形
解答: 解:(1)假设x与y表示三个长度中的两个,因为是长度,
所以应有:x>0,y>0和x+y<18,
即所有x和y值必须在如图所示的以(0,18),(0,0)和(18,0)为顶点的三角形内,
要组成三角形,由组成三角形的条件知,
x和y都小于9,且x+y>9(如图所示的阴影部分),
又因为阴影部分三角形的面积占大三角形面积的
1
4

故能够组成三角形的概率为0.25.
一个任意长的线段随机地分成三段,则这三段能够组成一个三角形的概率不变,是0.25;
(2)△OPA为钝角三角形的概率为
S△AEF+S半圆EOF+S△BCD
S正方形
=
5
8
+
π
16
点评:本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的终边上有一点P的坐标是(-1,2
2
),则cosα的值为(  )
A、-1
B、2
2
C、
3
3
D、-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:mx2+(m-1)x+m2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知acosC-csinC=b.
(Ⅰ)若C=
π
6
,求∠B.
(Ⅱ)求sin(2C-A)+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,侧面PAB⊥平面ABCD,AP=AB=1,∠PAB=
3
,点M,N,E分别在线段PD,AC,BC上,且满足DM=CN,EN∥AB.
(Ⅰ)求证:平面EMN∥平面PAB;
(Ⅱ)设
DM
DP
=λ,若二面角A-MN-E的大小为
3
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(x2-4)(
x+2
x2-2x
-
x-1
x2-4x+4
)÷
x-4
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
(x≥1),若a为正常数,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足条件:a1=3,a2=2,b1=b2=2,b3=3,且数列{an-1}为等比数列,数列{bn+1-bn}为等差数列,
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)当n≥3时,求证:
1
b3-2
+
1
b4-2
+…+
1
bn-2
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(2+i)(1-2i)的实部为
 

查看答案和解析>>

同步练习册答案