精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+2x+a
x
(x≥1),若a为正常数,求f(x)的最小值.
考点:利用导数求闭区间上函数的最值
专题:导数的概念及应用
分析:由已知得f(x)=1-
a
x2
=
x2-a
x2
,x≥1,由此利用导数性质能求出f(x)的最小值.
解答: 解:f(x)=
x2+2x+a
x
=x+
a
x
+2,x≥1
f(x)=1-
a
x2
=
x2-a
x2
,x≥1,
a
<1,即0<a<1时,由x≥1,知f′(x)>0,
∴f(x)的最小值为f(1)=3+a;
a
≥1时,即a≥1时,由f′(x)>0,得x>
a
,由f′(x)<0,得1≤x<
a

∴f(x)的最小值为f(
a
)=2+2
a

综上所述,f(x)的最小值为:
3+a,0<a<1
2+2
a
,a≥1
点评:本题考查函数的最小值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于非零向量
a
b
,给出以下结论:
①若
a
b
,则
a
b
方向上的投影为|
a
|;
②若
a
b
,则
a
b
=(
a
b
2
③若
a
c
=
b
c
,则
a
=
b

④若|
a
|=|
b
|,且
a
b
同向,则
a
b

其中所有正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2ωx-
3
sinωx•cosωx(ω>0)的最小正周期是π,
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的 对 边 分 别 是a,b,c,若(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将一个长为18cm的线段随机地分成三段,则这三段能够组成一个三角形的概率是多少?探索一个任意长的线段随机地分成三段,则这三段能够组成一个三角形的概率是多少?
(2)已知O为正方形ABCD的中心,现在正方形内随机地取一点P,求使△OPA为钝角三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,点A,B,C均在单位圆上,已知点A在第一象限用横坐标是
3
5
,点B在第二象限,点C(1,0).
(1)设∠COA=θ,求sin2θ的值;
(2)若△AOB为正三角形,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1)求an
(2)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x,g(x)=x2-2x,x∈[2,4].
(1)求f(x),g(x)的单调区间;
(2)求f(x),g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+3x(x>0)
x2-3x(x≤0)

(1)作出函数f(x)的图象,并求函数f(x)的单调区间;
(2)求集合M={m|使方程f(x)=m有三个不相等的实数根}.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E是C1D1的中点,正方体棱长为2,求异面直线DE与AC所成角的余弦值.

查看答案和解析>>

同步练习册答案