精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2x,g(x)=x2-2x,x∈[2,4].
(1)求f(x),g(x)的单调区间;
(2)求f(x),g(x)的最小值.
考点:二次函数在闭区间上的最值,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)求函数x2-2x的对称轴,这样即可根据二次函数的单调性求出函数f(x),g(x)的单调区间;
(2)根据(1)判断出的函数f(x),g(x)的单调性,即可求这两个函数的最小值.
解答: 解:(1)函数f(x)=x2-2x的对称轴是x=1;
∴函数f(x)在(-∞,1]上单调递减,在(1,+∞)上单调递增;函数g(x)在[2,4]上单调递增;
(2)由(1)知:函数f(x)在x=1时取得最小值-1,g(x)在x=2时取得最小值0.
点评:本题考查二次函数的单调区间的求法,以及根据二次函数的单调性及顶点求二次函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项an=(n+1)(
10
11
n(n∈N*)试问数列{an}中是否存在最大项?若存在求出最大项,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,侧面PAB⊥平面ABCD,AP=AB=1,∠PAB=
3
,点M,N,E分别在线段PD,AC,BC上,且满足DM=CN,EN∥AB.
(Ⅰ)求证:平面EMN∥平面PAB;
(Ⅱ)设
DM
DP
=λ,若二面角A-MN-E的大小为
3
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
(x≥1),若a为正常数,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,BC=
1
2
AD=1,PD=CD=2,Q为AD的中点,M为PC的中点.
(Ⅰ)证明:PA∥平面BMQ;
(Ⅱ)求三棱锥A-BMQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足条件:a1=3,a2=2,b1=b2=2,b3=3,且数列{an-1}为等比数列,数列{bn+1-bn}为等差数列,
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)当n≥3时,求证:
1
b3-2
+
1
b4-2
+…+
1
bn-2
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式为f(x)=
1
4x
-
1
2x
(b∈R).
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}中,a1=1且a1、a3、a13成等比数列
(1)求数列{an}的通项公式
(2)设bn=2an,求{bn}的前n项和为sn

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=3sin(2x+φ),|φ|<
π
2
的图象向左平移
π
3
个得到偶函数y=f(x)的图象.
(1)求y=f(x)解析式;
(2)求y=f(x)的最大值及单调增区间.

查看答案和解析>>

同步练习册答案