精英家教网 > 高中数学 > 题目详情
已知数列{an}和{bn}满足条件:a1=3,a2=2,b1=b2=2,b3=3,且数列{an-1}为等比数列,数列{bn+1-bn}为等差数列,
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)当n≥3时,求证:
1
b3-2
+
1
b4-2
+…+
1
bn-2
<2.
考点:数列的求和,等比数列的性质
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用a1=3,a2=2,数列{an-1}为等比数列,求数列{an}的通项公式、b1=b2=2,b3=3,数列{bn+1-bn}为等差数列,求{bn}的通项公式;
(Ⅱ)n≥3时,
1
bn-2
=
2
n(n-1)
=2(
1
n-1
-
1
n
),再相加,即可证明结论
解答: (Ⅰ)解:∵a1=3,a2=2,数列{an-1}为等比数列,
∴an-1=2•(
1
2
)n-1
=22-n
∴an=22-n+1,
∵b1=b2=2,b3=3,数列{bn+1-bn}为等差数列,
∴bn+1-bn=n-1,
∴bn=b1+(b2-b1)+…+(bn-bn-1)=
n2-n+4
2

(Ⅱ)证明:n≥3时,
1
bn-2
=
2
n(n-1)
=2(
1
n-1
-
1
n
),
1
b3-2
+
1
b4-2
+…+
1
bn-2
=2(
1
2
-
1
3
+…+
1
n-1
-
1
n
)=2(
1
2
-
1
n
)≤
1
3
<2.
点评:本题考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设一组数据x1,x2,…xn的平均数为
.
x
,方差为s2
(1)求数据ax1+b,ax2+b,…axn+b的平均数,标准差.
(2)已知一组数据x1,x2,…x10的方差为2,且(x1-3)2+(x2-3)2+…+(x10-3)2=120,求
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将一个长为18cm的线段随机地分成三段,则这三段能够组成一个三角形的概率是多少?探索一个任意长的线段随机地分成三段,则这三段能够组成一个三角形的概率是多少?
(2)已知O为正方形ABCD的中心,现在正方形内随机地取一点P,求使△OPA为钝角三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1)求an
(2)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x,g(x)=x2-2x,x∈[2,4].
(1)求f(x),g(x)的单调区间;
(2)求f(x),g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)
2
x-2
≥1
(2)log(2x-3)(x2-3)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+3x(x>0)
x2-3x(x≤0)

(1)作出函数f(x)的图象,并求函数f(x)的单调区间;
(2)求集合M={m|使方程f(x)=m有三个不相等的实数根}.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场搞促销抽奖活动,规则如下:箱内放有3枚白棋子和2枚黑棋子,顾客从中取出2枚棋子,如果两位棋子都是黑棋子或者都是白棋子,则中奖.奖励方法如下:若取出2枚黑棋子则中一等奖,奖励价值100元的商品;若取出2枚白棋子中则中二等奖,奖励价值50元的商品.求
(1)某人抽奖一次,中一等奖的概率;
(2)某人抽奖一次,中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ax)-
x-a
x
(a≠0)
(Ⅰ)求函数f(x)的单调区间及最值;
(Ⅱ)求证:对于任意正整数n,均有1+
1
2
+
1
3
+…+
1
n
≥ln
en
n!
(e为自然对数的底数);
(Ⅲ)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,说明理由.

查看答案和解析>>

同步练习册答案