精英家教网 > 高中数学 > 题目详情
某商场搞促销抽奖活动,规则如下:箱内放有3枚白棋子和2枚黑棋子,顾客从中取出2枚棋子,如果两位棋子都是黑棋子或者都是白棋子,则中奖.奖励方法如下:若取出2枚黑棋子则中一等奖,奖励价值100元的商品;若取出2枚白棋子中则中二等奖,奖励价值50元的商品.求
(1)某人抽奖一次,中一等奖的概率;
(2)某人抽奖一次,中奖的概率.
考点:n次独立重复试验中恰好发生k次的概率
专题:计算题,概率与统计
分析:利用古典概型概率公式,即可求出结论.
解答: 解:(1)由题意,抽奖一次,中一等奖的概率为
C
2
2
C
2
5
=
1
10

(2)抽奖一次,中奖的概率为
C
2
2
C
2
5
+
C
2
3
C
2
5
=
2
5
点评:本题考查概率的计算,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知acosC-csinC=b.
(Ⅰ)若C=
π
6
,求∠B.
(Ⅱ)求sin(2C-A)+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足条件:a1=3,a2=2,b1=b2=2,b3=3,且数列{an-1}为等比数列,数列{bn+1-bn}为等差数列,
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)当n≥3时,求证:
1
b3-2
+
1
b4-2
+…+
1
bn-2
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
t
x
,有如下性质:如果常数t>0,那么该函数(0,
t
]上是减函数,在[
t
,+∞)上是增函数.
(1)已知h(x)=x+
4
x
,x∈[1,8],求函数h(x)的最大值和最小值.
(2)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(3)对于(2)中的函数f(x)和函数g(x)=-x-2a,若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}中,a1=1且a1、a3、a13成等比数列
(1)求数列{an}的通项公式
(2)设bn=2an,求{bn}的前n项和为sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x∈Z|-2≤x≤6},集合A={-1,0,1},B={x∈U|2x+3≤x2}.
求(Ⅰ)A∩B;
(Ⅱ)∁U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(2+i)(1-2i)的实部为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数且对任意实数x恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)当x∈[-2,0)时,求f(x)的解析式;
(2)计算f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函数f(x)=ln2x+lnx-a有零点;
③?m∈R,使f(x)=(m-1)•xm2-4m+3是幂函数,且在(0,+∞)上递减;
④若函数f(x)=|2x-1|,则?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
其中是假命题的
 
(填序号).

查看答案和解析>>

同步练习册答案