精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
t
x
,有如下性质:如果常数t>0,那么该函数(0,
t
]上是减函数,在[
t
,+∞)上是增函数.
(1)已知h(x)=x+
4
x
,x∈[1,8],求函数h(x)的最大值和最小值.
(2)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(3)对于(2)中的函数f(x)和函数g(x)=-x-2a,若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.
考点:函数恒成立问题,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)利用已知明确h(x)在x∈[1,2]上单调递减,在x∈[2,8]上单调递增,则在x=2时取最小值,比较1与8的函数值得到最大值;
(2)把2x+1看成整体,研究对勾函数的单调性从而求出函数的值域,以及利用复合函数的单调性的性质得到该函数的单调性;
(3)对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)可转化成f(x)的值域为g(x)的值域的子集,建立关系式,解之即可.
解答: 解:(1)由已知可知,函数h(x)在x∈[1,2]上单调递减,在x∈[2,8]上单调递增,
因为h(1)=5<h(8)=
17
2
,所以当x=8时,h(x)max=h(8)=
17
2

当x=2时,h(x)min=h(2)=4
(2)y=f(x)=
4x2-12x-3
2x+1
=2x+1+
4
2x+1
-8

设u=2x+1,x∈[0,1],1≤u≤3,则y=u+
4
u
-8,u∈[1,3]

由已知性质得,
1≤u≤2,即0≤x≤
1
2
时,f(x)单调递减,所以递减区间为[0,
1
2
]

2≤u≤3,即
1
2
≤x≤1
时,f(x)单调递增,所以递增区间为[
1
2
,1]

f(0)=-3,f(
1
2
)=-4,f(1)=-
11
3
,得f(x)的值域为[-4,-3]
(3)由于g(x)=-x-2a为减函数,故g(x)∈[-1-2a,-2a],x∈[0,1]
由题意,f(x)的值域为g(x)的值域的子集,
从而有
-1-2a≤-4
-2a≥-3
所以a=
3
2
点评:本题主要考查了利用单调性求函数的值域,以及函数恒成立问题,同时考查了转化的思想和运算求解的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对某电子元件进行寿命追踪调查,情况如表:
(1)请完成频率分布表;并画出频率分布直方图;
(2)估计样本的众数,中位数.
(3)在统计数据的分析中,有一项计算的程序框图如图所示,求输出的S的值.
序号
(i)
寿命(h)组中值
G
频  数频  率
F
1100~20015020
2200~300250
3300~40035080
4400~5004500.2
5500~60055030
合  计2001

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1)求an
(2)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)
2
x-2
≥1
(2)log(2x-3)(x2-3)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+3x(x>0)
x2-3x(x≤0)

(1)作出函数f(x)的图象,并求函数f(x)的单调区间;
(2)求集合M={m|使方程f(x)=m有三个不相等的实数根}.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,且a≥1,函数f(x)=ax||x|-a|.
(Ⅰ)当a=1时,求函数f(x)的单调增区间;
(Ⅱ)若x∈[-2,2]时,f(x)的最大值为g(a),求出g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场搞促销抽奖活动,规则如下:箱内放有3枚白棋子和2枚黑棋子,顾客从中取出2枚棋子,如果两位棋子都是黑棋子或者都是白棋子,则中奖.奖励方法如下:若取出2枚黑棋子则中一等奖,奖励价值100元的商品;若取出2枚白棋子中则中二等奖,奖励价值50元的商品.求
(1)某人抽奖一次,中一等奖的概率;
(2)某人抽奖一次,中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+ax-4(a>0)对于x∈[1,3]恒小于或等于零.
(Ⅰ)求正数a的值所组成的集合A;
(Ⅱ)设关于x的方程f(x)+6=0的两个根为x1、x2,若对任意x∈A及t∈[-1,1],不等式m2+tm-2+2
6
≥|x1-x|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
π
2
)在某一个周期内的图象时,列表并填入的部分数据如下表:
xx1
1
3
x2
7
3
x3
ωx+ϕ0
π
2
π
2
Asin(ωx+ϕ)0
3
0-
3
0
(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;
(Ⅱ)将f(x)的图象沿x轴向右平移
2
3
个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.

查看答案和解析>>

同步练习册答案