精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1)求an
(2)设bn=2nan,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列的前n项和与通项公式求出公差与公差,由此能求出an=2n-1.
(2)由bn=2nan=(2n-1)•2n,利用错位相减法能求出数列{bn}的前n项和Tn
解答: 解:(1)由已知得
4a1+6d=8a1+4d
a1+(2n-1)d=2a1+2(n-1)d+1

解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵bn=2nan=(2n-1)•2n
∴Tn=1•2+3•22+5•23+…+(2n-1)•2n,①
2Tn=1•22+3•23+5•24+…+(2n-1)•2n+1,②
①-②,得:
-Tn=2+2(22+23+…+2n)-(2n-1)•2n+1
∴Tn=-2-2(22+23+…+2n)+(2n-1)•2n+1
=(2n-3)•2n+1+6.
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一支田径队共有运动员98人,其中女运动员42人,用分层抽样的方法抽取一个样本,每名运动员被抽到的概率都是
2
7
,则男运动员应抽取(  )
A、18人B、16人
C、14人D、12人

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知acosC-csinC=b.
(Ⅰ)若C=
π
6
,求∠B.
(Ⅱ)求sin(2C-A)+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(x2-4)(
x+2
x2-2x
-
x-1
x2-4x+4
)÷
x-4
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
(x≥1),若a为正常数,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
) (x∈[0,
π
2
])的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足条件:a1=3,a2=2,b1=b2=2,b3=3,且数列{an-1}为等比数列,数列{bn+1-bn}为等差数列,
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)当n≥3时,求证:
1
b3-2
+
1
b4-2
+…+
1
bn-2
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
t
x
,有如下性质:如果常数t>0,那么该函数(0,
t
]上是减函数,在[
t
,+∞)上是增函数.
(1)已知h(x)=x+
4
x
,x∈[1,8],求函数h(x)的最大值和最小值.
(2)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(3)对于(2)中的函数f(x)和函数g(x)=-x-2a,若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数且对任意实数x恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)当x∈[-2,0)时,求f(x)的解析式;
(2)计算f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

同步练习册答案