精英家教网 > 高中数学 > 题目详情
已知公差不为零的等差数列{an}中,a1=1且a1、a3、a13成等比数列
(1)求数列{an}的通项公式
(2)设bn=2an,求{bn}的前n项和为sn
考点:数列的求和,等差数列的性质
专题:计算题,等差数列与等比数列
分析:(1)设等差数列{an}的公差为d,由题意得(1+2d)2=1+12d,求出公差d的值,即可得到数列{an}的通项公式.
(2)利用等差数列的求和公式,即可得出结论.
解答: 解:(1)设等差数列{an}的公差为d,由a1=1,a1、a3、a13 成等比数列,
得 (1+2d)2=1+12d.
得d=2或d=0(舍去).    
故d=2.所以an =2n-1;
(2)因为bn=2an=4n-2,
所以{bn}是以2为首项,4为公差的等差数列,
所以sn=
n(2+4n-2)
2
=2n2
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,等差数列的通项公式,用公式法和错位相减法进行求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos2ωx-
3
sinωx•cosωx(ω>0)的最小正周期是π,
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的 对 边 分 别 是a,b,c,若(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x,g(x)=x2-2x,x∈[2,4].
(1)求f(x),g(x)的单调区间;
(2)求f(x),g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+3x(x>0)
x2-3x(x≤0)

(1)作出函数f(x)的图象,并求函数f(x)的单调区间;
(2)求集合M={m|使方程f(x)=m有三个不相等的实数根}.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(1-x)+lg(1+x)的定义域为A,函数f(x)=lg(x-1)(x∈[2,11])的值域为B.求:A,B,(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场搞促销抽奖活动,规则如下:箱内放有3枚白棋子和2枚黑棋子,顾客从中取出2枚棋子,如果两位棋子都是黑棋子或者都是白棋子,则中奖.奖励方法如下:若取出2枚黑棋子则中一等奖,奖励价值100元的商品;若取出2枚白棋子中则中二等奖,奖励价值50元的商品.求
(1)某人抽奖一次,中一等奖的概率;
(2)某人抽奖一次,中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

有5名男生,4名女生排成一排,
(1)从中选出3人排成一排,有多少种排法?
(2)若男生甲不站排头,女生乙不站排尾,则有多少种不同的排法?
(3)要求女生必须站在一起,有多少种不同的排法?
(4)若4名女生互不相邻,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E是C1D1的中点,正方体棱长为2,求异面直线DE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若在一个三棱锥S-ABC中,SA、SB、SC两两垂直,则我们称这样的三棱锥为直角三棱锥(也有称三直三棱锥).在下列关于直角三棱锥S-ABC的相关说法中:
①若SA=a,SB=b,SC=c,顶点S到底面ABC的距离为h,则
1
h2
=
1
a2
+
1
b2
+
1
c2

②若侧面SAB、SAC、SBC的面积分别为S1、S2、S3,底面ABC的面积为S0,则S02=S12+S22+S32
③设侧棱SA、SB、SC与底面ABC所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ
④设侧面SAB、SAC、SBC与底面ABC所成的二面角分别为α,β,γ,则cos2α+cos2β+cos2γ=2;
其中正确的说法有
 
(填番号)

查看答案和解析>>

同步练习册答案