精英家教网 > 高中数学 > 题目详情
17.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$πB.$\frac{16}{3}$πC.D.16π

分析 由已知中的三视图,可知该几何体是一个圆柱挖去一个同底等高的圆锥,分别计算柱体和圆锥的体积,相减可得答案.

解答 解:由已知中的三视图,可知该几何体是一个圆柱挖去一个同底等高的圆锥,
圆柱和圆锥的底面直径为4,故底面半径为2,故底面面积S=4π,
圆柱和圆锥的高h=2,
故组合体的体积V=(1-$\frac{1}{3}$)Sh=$\frac{16}{3}π$,
故选:B

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=3,且an+1=an+log3(1+$\frac{1}{n}$),则a9=(  )
A.3B.4C.log310+3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图一个倒三角形数表:
它的排列规则是:第i(i=2,…,101)行的第j(j=1,2,…,102-i)个数ai.j=$\frac{{a}_{i-1,j}+{a}_{i-1,j+1}}{2}$,现设a1.j=xj-1(j=1,2,…,101),其中x>0,若a101.1=$\frac{1}{{2}^{50}}$,则x=(  )
A.$\sqrt{2}$-1B.1-$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图程序框图其输出结果是(  )
A.29B.31C.33D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“a≥3”是“?x∈[1,2],使得x2-a≤0”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知
$\frac{2}{5}$=$\frac{1}{3}$+$\frac{1}{15}$,
$\frac{2}{7}$=$\frac{1}{4}$+$\frac{1}{28}$,
$\frac{2}{9}$=$\frac{1}{5}$+$\frac{1}{45}$,

观察以上各等式有:n≥3,且n∈N*时,$\frac{2}{2n-1}$=$\frac{1}{n}+\frac{1}{n(2n-1)}$(n≥3,且n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(1)求椭圆C的方程;
(2)直线x=my+2与椭圆C交于A、B两点,E(-$\frac{2}{m}$,$\frac{m-2}{m}$),设△AEB的面积为S,若0<S≤1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知e=2.71828为自然对数的底数.
(1)求函数f(x)=$\frac{{x}^{2}}{lnx}$在区间[${e}^{\frac{1}{4}}$,e]上的最值;
(2)判断函数g(x)=$\frac{{x}^{2}+4(\frac{1}{\sqrt{e}})^{2}-4\frac{1}{\sqrt{e}}x}{lnx}$的单调性;
(3)当0<m<$\frac{1}{2}$时,设函数G(x)=f(x)+$\frac{4{m}^{2}-4mx}{lnx}$(其中m为常数)的三个极值点a、b、c,且a<b<c,将2a、b、c、0、1这5个数按照从小到达的顺序排列,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.点P是△ABC所在的平面外一点P,连结PA、PB、PC,且有PB=PC=$\sqrt{5}$,AB=AC=2$\sqrt{2}$,∠BAC=90°,G为△PAB的重心.
(1)试判断直线BG与AC的位置关系,并说明理由;
(2)记H为AB中点,当PA=$\sqrt{5}$时,求直线HG与平面PAC所成角的正弦值.

查看答案和解析>>

同步练习册答案