精英家教网 > 高中数学 > 题目详情
12.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,∠AOC=120°,∠A1O1B1=60°,其中B1与C在平面AA1O1O的同侧,则异面直线B1C与AA1所成角的大小是45°

分析 如图所示,建立空间直角坐标系.利用向量夹角公式即可得出.

解答 解:如图所示,建立空间直角坐标系.
O(0,0,0),A(0,1,0),A1(0,1,1),C$(\frac{\sqrt{3}}{2},-\frac{1}{2},0)$,
B1$(\frac{\sqrt{3}}{2},\frac{1}{2},1)$.
∴$\overrightarrow{A{A}_{1}}$=(0,0,1),$\overrightarrow{C{B}_{1}}$=(0,1,1).
设异面直线B1C与AA1所成角为θ.
∴cosθ=$\frac{1}{1×\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故答案为:45°.

点评 本题考查了空间角、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.135°的圆心角所对的弧长为3π,则圆的半径是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=cos(2x+\frac{π}{6})+cos(2x-\frac{π}{6})+2sinxcosx+1$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数g(x)=f(x)-m在区间$[0,\frac{π}{3}]$上有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.己知直线2x-y-1=0与直线x-2y+1=0交于点P.
(1)求过点P且垂直于直线3x+4y-15=0的直线l1的方程;(结果写成直线方程的一般式)
(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)解不等式|2x+1|-|x-4|>2;
(2)已知:a>0,b>0,求证:$\frac{a}{{\sqrt{b}}}+\frac{b}{{\sqrt{a}}}≥\sqrt{a}+\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则f(sinα)与f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.f(sinα)≥f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.x(x-3)<0是|x-1|<2成立的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={3,4,5,6,7},B={x|3<x<7},则A∩(∁UB)=(  )
A.{3,5,7}B.{3,7}C.{4,5,6}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,过抛物线y2=2px(p>0)的焦点F作一条倾斜角为$\frac{π}{4}$的直线与抛物线相交于A,B两点.
(1)用p表示|AB|;
(2)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3,求这个抛物线的方程.

查看答案和解析>>

同步练习册答案