精英家教网 > 高中数学 > 题目详情
设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F
斜角为的直线交椭圆MAB两点。
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小
值。
,

解:(Ⅰ)所求椭圆M的方程为…3分
(Ⅱ)当,设直线AB的斜率为k = tan,焦点F ( 3 , 0 ),则直线AB的方程为     y = k ( x – 3 )              有( 1 + 2k2 )x2 – 12k2x + 18( k2 – 1 ) =" 0"
设点A ( x1 , y1 ) , B ( x2 , y2 )             有x1 + x2 =, x1x2 =
|AB| =             
又因为k = tan=代入**式得  |AB| =
=时,直线AB的方程为x = 3,此时|AB| =
而当=时,|AB| ==                  |AB| =
同理可得         |CD| ==
有|AB| + |CD| =+=
因为sin2∈[0,1],所以  当且仅当sin2=1时,|AB|+|CD|有最小值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知中心为坐标原点O,焦点在x轴上的椭圆的两个短轴端点和左右焦点所组成的四边形是面积为2的正方形,
(1)求椭圆的标准方程;
(2)过点P(0,2)的直线l与椭圆交于点A,B,当△OAB面积最大时,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知椭圆的左、右焦点分别为,下顶点为,点是椭圆上任一点,⊙是以为直径的圆.

(Ⅰ)当⊙的面积为时,求所在直线的方程;
(Ⅱ)当⊙与直线相切时,求⊙的方程;
(Ⅲ)求证:⊙总与某个定圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,是椭圆上的任意一点,则的最大值是                              (     )
、9        、16            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设A、B是两个定点,|AB|=2,动点满足,若P点的轨迹是椭圆,则的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设是椭圆(a>b>0)的左焦点,直线为对应的准线,直线轴    

交于点, 为椭圆的长轴,已知,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求证:对于任意的割线,恒有;
(Ⅲ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆经过点,对称轴为坐标轴,焦点轴上,离心率
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于椭圆,定义为椭圆的离心率,椭圆离心率的取值范围是,离心率越大椭圆越“扁”,离心率越小则椭圆越“圆”.若两椭圆的离心率相等,我们称两椭圆相似.已知椭圆与椭圆相似,则的值为  

查看答案和解析>>

同步练习册答案