精英家教网 > 高中数学 > 题目详情
(本小题满分16分)已知椭圆的左、右焦点分别为,下顶点为,点是椭圆上任一点,⊙是以为直径的圆.

(Ⅰ)当⊙的面积为时,求所在直线的方程;
(Ⅱ)当⊙与直线相切时,求⊙的方程;
(Ⅲ)求证:⊙总与某个定圆相切.
PA
M
(Ⅰ)易得,设点P
,所以  3分
又⊙的面积为,∴,解得,∴
所在直线方程为    5分
(Ⅱ)因为直线的方程为,且到直线
距离为   7分
化简,得,联立方程组
解得   10分
∴当时,可得,∴⊙的方程为
时,可得,∴⊙的方程为   12分
(Ⅲ)⊙始终和以原点为圆心,半径为(长半轴)的圆(记作⊙)相切 13分
证明:因为
又⊙的半径
,∴⊙和⊙相内切     16分
(说明:结合椭圆定义用几何方法证明亦可)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆与射线y=(x交于点A,过A作倾斜角互补的两条直线,
它们与椭圆的另一个交点分别为点B和点C.
(Ⅰ)求证:直线BC的斜率为定值,并求这个定值;
(Ⅱ)求三角形ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆M(ab>0)的离心率为,长轴长为,设过右焦点F
斜角为的直线交椭圆MAB两点。
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆MCD,求|AB| + |CD|的最小
值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆为其左、右焦点,A为右顶点,l为左准线,过的直线与椭圆相交于P,Q两点,且有

(1)求椭圆C的离心率e的最小值;
(2),求证:M,N两点的纵坐标之积是定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直角坐标系中,已知椭圆的离心率,左、右两个焦点分别为。过右焦点且与轴垂直的直线与椭圆相交两点,且
(1)求椭圆的方程;
(2)设椭圆的左顶点为,下顶点为,动点满足,试求点的轨迹方程,使点关于该轨迹的对称点落在椭圆上.
                                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

20.(本小题满分14分)

已知圆和椭圆的一个公共点为为椭圆的右焦点,直线与圆相切于点
(Ⅰ)求值和椭圆的方程;
(Ⅱ)圆上是否存在点,使为等腰三角形?若存在,求出点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点,焦点在轴上的椭圆经过点M(1,),斜率为的直线经过椭圆的下顶点D和右焦点F,A、B为椭圆上不同于M的两点。
(1)求椭圆的标准方程;
(2)若直线AB过点F且不与坐标轴垂直,求线段AB的中垂线与轴的交点的横坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


请阅读以下材料,然后解决问题:
①设椭圆的长半轴长为a短半轴长为b,则椭圆的面积为ab
②我们把由半椭圆C1+="1" (x≤0)与半椭圆C2+="1" (x≥0)合成的曲线称作“果圆”,其中=+a>0,b>c>0
如右上图,设点F0F1F2是相应椭圆的焦点,A1A2B1B2是“果圆”与xy轴的交点,若△F0 F1 F2是边长为1的等边三角形,则上述“果圆”的面积为                               

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的两个焦点分别为,点在椭圆上,且
,则椭圆的离心率等于          

查看答案和解析>>

同步练习册答案