精英家教网 > 高中数学 > 题目详情
已知椭圆为其左、右焦点,A为右顶点,l为左准线,过的直线与椭圆相交于P,Q两点,且有

(1)求椭圆C的离心率e的最小值;
(2),求证:M,N两点的纵坐标之积是定值。
(1);(2)略
联立方程,消去,化简得.

,则有


,          



,即
化简可得.
(1)由,可得到.即.
椭圆的离心率的最小值为.
(2)的方程为,与的方程:联立可得点的纵坐标为,同理可得.
(定值)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆>0)上一点(3,4),若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知中心为坐标原点O,焦点在x轴上的椭圆的两个短轴端点和左右焦点所组成的四边形是面积为2的正方形,
(1)求椭圆的标准方程;
(2)过点P(0,2)的直线l与椭圆交于点A,B,当△OAB面积最大时,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知椭圆的左、右焦点分别为,下顶点为,点是椭圆上任一点,⊙是以为直径的圆.

(Ⅰ)当⊙的面积为时,求所在直线的方程;
(Ⅱ)当⊙与直线相切时,求⊙的方程;
(Ⅲ)求证:⊙总与某个定圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左、右焦点,与直线相切的交椭圆于点恰好是直线的切点.
(1)求该椭圆的离心率;
(2)若点到椭圆的右准线的距离为,过椭圆的上顶点A的直线与交于B、C两点,且,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左右焦点,若在其右准线上存在点
使得线段的垂直平分线恰好经过,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆经过点,对称轴为坐标轴,焦点轴上,离心率
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于椭圆,定义为椭圆的离心率,椭圆离心率的取值范围是,离心率越大椭圆越“扁”,离心率越小则椭圆越“圆”.若两椭圆的离心率相等,我们称两椭圆相似.已知椭圆与椭圆相似,则的值为  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的
四边形是一个面积为4的正方形,设P为该椭圆上的动点,CD的坐标分别是,则PC·PD的最大值为  (     )
A   4        B       C    3     D   +2

查看答案和解析>>

同步练习册答案