精英家教网 > 高中数学 > 题目详情
15.连续抛掷2颗骰子,则出现朝上的点数之和等于8的概率为$\frac{5}{36}$.

分析 先求出基本事件总数,再用列举法求出出现朝上的点数之和等于8的基本事件个数,由此能求出出现朝上的点数之和等于8的概率.

解答 解:连续抛掷2颗骰子,基本事件总数n=6×6=36,
出现朝上的点数之和等于8的基本事件有:
(2,6),(6,2),(3,5),(5,3),(4,4),共5个,
∴出现朝上的点数之和等于8的概率为p=$\frac{5}{36}$.
故答案为:$\frac{5}{36}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若方程$\frac{{x}^{2}}{9-k}$-$\frac{{y}^{2}}{4-k}$=1表示焦点在x轴上的椭圆,则实数k的取值范围是4<k<$\frac{13}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.阅读如图所示程序框图,根据框图的算法功能回答下列问题:
(Ⅰ)当输入的x∈[-1,3]时,求输出y的值组成的集合;
(Ⅱ)已知输入的x∈[a,b]时,输出y的最大值为8,最小值为3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{9}+\frac{y^2}{n^2}=1$与双曲线$\frac{x^2}{4}-\frac{y^2}{m^2}=1$有相同的焦点,则动点P(n,m)的轨迹是(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.圆的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=lnx-f′(1)x2+2x-1,则f(1)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数y=f(x)是定义在上(0,+∞)的减函数,并且满足f(xy)=f(x)+f(y),$f(\frac{1}{3})=\frac{1}{2}$.
(1)求f(1);
(2)若存在实数m,使得f(m)=1,求m的值;
(3)若f(x-2)>1+f(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将下列曲线的参数方程化为普通方程,并指明曲线的类型.
(1)$\left\{\begin{array}{l}{x=acosθ}\\{y=bsinθ}\end{array}\right.$ (θ为参数,a,b为常数,且a>b>0);
(2)$\left\{\begin{array}{l}{x=\frac{a}{cosφ}}\\{y=btanφ}\end{array}\right.$,(φ为参数,a,b为正常数);
(3)$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p为正常数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正四面体ABCD(各面均为正三角形)的棱长为2,其内切球面上有一动点P,则AP的最小值为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{2\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案