精英家教网 > 高中数学 > 题目详情
16.函数f(x)=x2-x-2,x∈[-2,2],那么任取一点x0∈[-2,2],使f(x0)≤0的概率是$\frac{3}{4}$.

分析 本题是几何概型的考查,只要明确事件对应的区间长度,利用长度比求概率.

解答 解:由题意,本题符合几何概型,区间[-2,2]长度为4,
使f(x0)≤0即x2-x-2≤0的区间为[-1,2],长度为3,
由几何概型公式得到,使f(x0)≤0的概率为$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查了几何概型概率求法;关键是明确事件集合测度,本题是区间长度的比为概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在正方体ABCD-A1B1C1D1中,E、F分别为棱AB、AD的中点.
(1)求证:EF平行平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1
(3)求直线A1C与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:函数$f(x)=\frac{1}{{\sqrt{x}}}$在区间(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的通项an=n2-11n+10,则an的最小值是-20,Sn的最小值是-120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正弦函数y=sinx的图象上最高点和最低点之间的最短距离是(  )
A.2B.2$\sqrt{2}$C.$\sqrt{4+{π}^{2}}$D.2$\sqrt{1+{π}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.作出下列函数的图象:
(1)y=log2(x-1);
(2)y=|log2(x-1)|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对任意实数x,y,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,那么对定义域R上的函数f(x),下列结论正确的是(  )
A.f(x)是奇函数,又是减函数B.f(x)是奇函数,又是增函数
C.f(x)是偶函数,又是减函数D.f(x)是偶函数,又是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数y=1g(3+2x-x2)的定义域为集合M.求:当x∈M时,函数f(x)=2x+3-3•4x的最值,并指出f(x)取得最值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.y=x+$\frac{1}{x}$的单调区间:增区间(-∞,-1),(1,+∞);减区间(-1,0),(0,1);y=ax+$\frac{b}{x}$(a>0,b>0)的单调区间:增区间(-∞,-$\frac{\sqrt{ab}}{a}$),($\frac{\sqrt{ab}}{a}$,+∞);减区间(-$\frac{\sqrt{ab}}{a}$,0),($\frac{\sqrt{ab}}{a}$,1).

查看答案和解析>>

同步练习册答案