分析 先求出函数的导数,解关于导函数的不等式,从而求出其递减区间.
解答 解:(1)y=x+$\frac{1}{x}$,y′=1-$\frac{1}{{x}^{2}}$=$\frac{{x}^{2}-1}{{x}^{2}}$,
令y′>0,解得:x>1或x<-1,
令y′<0,解得:-1<x<0或0<x<1,
∴y=x+$\frac{1}{x}$在(-∞,-1),(1,+∞)递增,在(-1,0),(0,1)递减;
(2)y′=a-$\frac{b}{{x}^{2}}$=$\frac{{ax}^{2}-b}{{x}^{2}}$,
令y′<0,即ax2-b<0解得:-$\frac{\sqrt{ab}}{a}$<x<$\frac{\sqrt{ab}}{a}$,且x≠0,
令y′>0,即ax2-b>0解得:x<-$\frac{\sqrt{ab}}{a}$或x>$\frac{\sqrt{ab}}{a}$,
∴y=ax+$\frac{b}{x}$在(-∞,-$\frac{\sqrt{ab}}{a}$),($\frac{\sqrt{ab}}{a}$,+∞)递增,在(-$\frac{\sqrt{ab}}{a}$,0),($\frac{\sqrt{ab}}{a}$,1)递减;
故答案为:(-∞,-1),(1,+∞),(-1,0),(0,1),(-∞,-$\frac{\sqrt{ab}}{a}$),($\frac{\sqrt{ab}}{a}$,+∞),(-$\frac{\sqrt{ab}}{a}$,0),($\frac{\sqrt{ab}}{a}$,1).
点评 本题考查了函数的单调性问题,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,4) | B. | (-1,1) | C. | (-2,4) | D. | [-1,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com