精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|x≤4},B={x|x2>4},则A∩B=(  )
A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|x<-2或2<x≤4}D.{x|x<-2或2<x<4}

分析 根据题意,解x2>4可得集合B,进而由交集的定义计算可得答案.

解答 解:根据题意,x2>4⇒x<-2或x>2,
即B={x|x2>4}={x|x<-2或x>2},
则A∩B={x|x<-2或2<x≤4},
故选:C.

点评 本题考查集合交集的计算,关键是正确表示出集合B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=3b(O为坐标原点),则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{7}{6}$D.$\frac{\sqrt{42}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x,y满足约束条件$\left\{\begin{array}{l}{x<2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,则$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=sin(πx+θ)(|θ|<$\frac{π}{2}$)的部分图象如图,且f(0)=-$\frac{1}{2}$,则图中m的值为(  )
A.1B.$\frac{4}{3}$C.2D.$\frac{4}{3}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.我国为确保贫困人口到2020年如期脱贫,把2017年列为“精准扶贫”攻坚年,2017年1月1日某贫困县随机抽取100户贫困家庭的每户人均收入数据做为样本,以考核该县2016年的“精准扶贫”成效(2016年贫困家庭脱贫的标准为人均收入不小于3000元).根据所得数据将人均收入(单位:千元)分成五个组:[1,2),[2,3),[3,4),[4,5),[5,6],并绘制成如图所示的频率分布直方图.
(1)求频率分布直方图中a的值;
(2)如果被抽取的100户贫困家庭有80%脱贫,则认为该县“精准扶贫”的成效是理想的.请从统计学的角度说明该县的“精准扶贫”效果是理想还是不理想?
(3)从户人均收入小于3千元的贫困家庭中随机抽取2户,求至少有1户人均收入在区间[1,2)上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinωx-4sin2$\frac{ωx}{2}$+2+m(其中ω>0,m∈R),且当x=$\frac{1}{2}$时,f(x)的图象在y轴右侧得到第一个最高点.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)在区间[2,4]上的最大值为5,最小值是p,求m和p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知焦点在x轴上,离心率为$\frac{{\sqrt{6}}}{3}$的椭圆C的一个顶点是(0,1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,且OA⊥OB,O为坐标原点,判断直线l与圆x2+y2=1的位置关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知atanB=2bsinA.
(1)求B;
(2)若b=$\sqrt{3}$,A=$\frac{5π}{12}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“x<3”是“ln(x-2)<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案