精英家教网 > 高中数学 > 题目详情
6.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=3b(O为坐标原点),则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{7}{6}$D.$\frac{\sqrt{42}}{6}$

分析 利用双曲线的定义与余弦定理可得到a2与c2的关系,从而可求得该双曲线的离心率.

解答 解:设该双曲线的离心率为e,依题意,||PF1|-|PF2||=2a,
∴|PF1|2+|PF2|2-2|PF1|•|PF2|=4a2
不妨设|PF1|2+|PF2|2=x,|PF1|•|PF2|=y,
上式为:x-2y=4a2,①
∵∠F1PF2=60°,
∴在△F1PF2中,
由余弦定理得,|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos60°=4c2,②
即x-y=4c2,②
又|OP|=3b,$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,
∴$\overrightarrow{P{F}_{1}}$2+$\overrightarrow{P{F}_{2}}$2+2|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|•cos60°=4|$\overrightarrow{PO}$|2=36b2
即|PF1|2+|PF2|2+|PF1|•|PF2|=36b2
即x+y=36b2,③
由②+③得:2x=4c2+36b2
①+③×2得:3x=4a2+72b2
于是有12c2+108b2=8a2+144b2
∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{7}{6}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{42}}{6}$.
故选:D.

点评 本题考查双曲线的定义与余弦定理的应用,得到a2与c2的关系是关键,也是难点,考查分析问题,解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.倾斜角为$\frac{π}{3}$的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若$|{BC}|=\frac{8}{3}$,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.5个车位分别停放了A,B,C,D,E,5辆不同的车,现将所有车开出后再按A,B,C,D,E的次序停入这5个车位,则在A车停入了B车原来的位置的条件下,停放结束后恰有1辆车停在原来位置上的概率是(  )
A.$\frac{3}{8}$B.$\frac{3}{40}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.现阶段全国多地空气质量指数“爆表”.为探究车流量与PM2.5浓度是否相关,现对北方某中心城市的车流量最大的地区进行检测,现采集到12月某天7个不同时段车流量与PM2.5浓度的数据,如下表:
车流量x(万辆/小时)1234567
PM2.5浓度y(微克/立方米)30363840424450
(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;
(2)规定当PM2.5浓度平均值在(0,50],空气质量等级为优;当PM2.5浓度平均值在(50,100],空气质量等级为良;为使该城市空气质量为优和良,利用该回归方程,预测要将车流量控制在每小时多少万辆内(结果以万辆做单位,保留整数).
附:回归直线方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直角△ABC中,AD为斜边BC边的高,若$|{\overrightarrow{AC}}|=1$,$|{\overrightarrow{AB}}|=3$,则$\overrightarrow{CD}•\overrightarrow{AB}$=(  )
A.$\frac{9}{10}$B.$\frac{3}{10}$C.$-\frac{3}{10}$D.$-\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数x,y满足$\left\{\begin{array}{l}x+2y-5≥0\\ x-3y+5≥0\\ kx-y-3k≤0\end{array}\right.$,若目标函数z1=3x+y的最小值的7倍与z2=x+7y的最大值相等,则实数k的值为(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与PM2.5的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期日
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;(提示数据:$\sum_{i=1}^7{{x_i}{y_i}=1372}$)
(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时PM2.5的浓度;(II)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某食品厂只做了3种与“福”字有关的精美卡片,分别是“富强福”、“和谐福”、“友善福”、每袋食品随机装入一张卡片,若只有集齐3种卡片才可获奖,则购买该食品4袋,获奖的概率为(  )
A.$\frac{3}{16}$B.$\frac{4}{9}$C.$\frac{3}{8}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x≤4},B={x|x2>4},则A∩B=(  )
A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|x<-2或2<x≤4}D.{x|x<-2或2<x<4}

查看答案和解析>>

同步练习册答案