精英家教网 > 高中数学 > 题目详情
8.在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

分析 (1)当a=90时,b=40,求出侧面积,利用配方法求纸盒侧面积的最大值;
(2)表示出体积,利用基本不等式,导数知识,即可确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

解答 解:(1)因为矩形纸板ABCD的面积为3600,故当a=90时,b=40,
从而包装盒子的侧面积S=2×x(90-2x)+2×x(40-2x)=-8x2+260x,x∈(0,20).…(3分)
因为S=-8x2+260x=-8(x-16.25)2+2112.5,
故当x=16.25时,侧面积最大,最大值为2112.5平方厘米.
(2)包装盒子的体积V=(a-2x)(b-2x)x=x[ab-2(a+b)x+4x2],x∈(0,$\frac{b}{2}$),b≤60.…(8分)
V=x[ab-2(a+b)x+4x2]≤x(ab-4$\sqrt{ab}$x+4x2)=x(3600-240x+4x)
=4x3-240x2+3600x.…(10分)
当且仅当a=b=60时等号成立.
设f(x)=4x3-240x2+3600x,x∈(0,30).则f′(x)=12(x-10)(x-30).
于是当0<x<10时,f′(x)>0,所以f(x)在(0,10)上单调递增;
当10<x<30时,f′(x)<0,所以f(x)在(10,30)上单调递减.
因此当x=10时,f(x)有最大值f(10)=16000,…(12分)此时a=b=60,x=10.
答:当a=b=60,x=10时纸盒的体积最大,最大值为16000立方厘米.…(14分)

点评 本题考查导数知识的综合运用,考查基本不等式,考查利用数学知识解决实际问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知某程序框图如图所示,则执行该程序后输出的结果是(  )
A.49B.50C.99D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x、y满足约束条件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,则z=4x+y的最大值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{1}{2}$ax2-x-m(m∈Z).
(Ⅰ)若f(x)是增函数,求a的取值范围;
(Ⅱ)若a<0,且f(x)<0恒成立,求m最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=-$\sqrt{3}$,则线段PF的长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=$\frac{π}{3}$,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上,$\frac{{A}_{1}M}{{A}_{1}D}$=λ.若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.
(Ⅰ)在棱PB上是否存在一点Q,使用A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.
(Ⅱ)求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,an=2an-1+1(n≥2,n∈N*)且a1=2.
(Ⅰ)证明:数列{an+1}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线的右顶点与抛物线y2=12x的焦点相同,它们的离心率之和是3,该双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}=1$B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步练习册答案