精英家教网 > 高中数学 > 题目详情
20.如图,四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.
(Ⅰ)在棱PB上是否存在一点Q,使用A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.
(Ⅱ)求点D到平面PAM的距离.

分析 (Ⅰ)当点Q为棱PB的中点时,A,Q,M,D四点共面.取棱PB的中点Q,连结QM,QA,由已知得QM∥BC,由此能证明A,Q,M,D四点共面.
(Ⅱ)点D到平面PAM的距离即点D到平面PAC的距离,由已知得得PO为三棱锥P-ACD的体高,由VD-PAC=VP-ACD,能求出点D到平面PAM的距离.

解答 解:(Ⅰ)当点Q为棱PB的中点时,A,Q,M,D四点共面,
证明如下:
取棱PB的中点Q,连结QM,QA,又M为PC的中点,所以QM∥BC,
在菱形ABCD中AD∥BC,所以QM∥AD,
所以A,Q,M,D四点共面.
(Ⅱ)点D到平面PAM的距离即点D到平面PAC的距离,
取AD中点O,连结OP,OC,AC,可知PO⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO?平面PAD,
所以PO⊥平面ABCD,即PO为三棱锥P-ACD的体高.
在Rt△POC中,PO=OC=$\sqrt{3}$,PC=$\sqrt{6}$,
在△PAC中,PA=AC=2,PC=$\sqrt{6}$,边PC上的高AM=$\sqrt{P{A}^{2}-P{M}^{2}}$=$\frac{\sqrt{10}}{2}$,
所以△PAC的面积S△PAC=$\frac{1}{2}×\sqrt{6}×\frac{\sqrt{10}}{2}$=$\frac{\sqrt{15}}{2}$,
设点D到平面PAC的距离为h,S△ACD=$\frac{\sqrt{3}}{4}×{2}^{2}$=$\sqrt{3}$
由VD-PAC=VP-ACD得$\frac{1}{3}×\frac{\sqrt{15}}{2}h=\frac{1}{3}×\sqrt{3}×\sqrt{3}$,解得h=$\frac{2\sqrt{15}}{5}$,
所以点D到平面PAM的距离为$\frac{2\sqrt{15}}{5}$.

点评 本题考查四点共面的判断与求法,考查点到平面的距离的求法,解题时要注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知△ABC的三个内角A,B,C依次成等差数列,BC边上的中线AD=$\sqrt{7}$,AB=2,则S△ABC=(  )
A.3B.2$\sqrt{3}$C.3$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点A(a,0),点P是双曲线C:$\frac{{x}^{2}}{4}$-y2=1右支上任意一点,若|PA|的最小值为3,则满足条件的A点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=2sin(2x-$\frac{π}{3}$)的图象关于直线x=x0对称,则|x0|的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线f(x)=xex在点P(1,e)处的切线与坐标轴围成的三角形面积为$\frac{e}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正项数列{an}中,a1=1,a2=2,$2{a_{n+1}}^2={a_{n+2}}^2+{a_n}^2$,则a6等于(  )
A.16B.8C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足($\sqrt{3}$+i)•z=4i,其中i为虚数单位,则z=(  )
A.1-$\sqrt{3}$iB.$\sqrt{3}$-iC.$\sqrt{3}$+iD.1+$\sqrt{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数据x1,x2,…,xn的平均数为h,y1,y2,…,ym的平均数为k,则把两组数据合并成一组后,其平均数为$\frac{nh+mk}{m+n}$.

查看答案和解析>>

同步练习册答案