精英家教网 > 高中数学 > 题目详情
5.曲线f(x)=xex在点P(1,e)处的切线与坐标轴围成的三角形面积为$\frac{e}{4}$.

分析 利用导数的几何意义求出切线方程,计算切线与坐标轴的交点坐标,即可得出三角形面积.

解答 解:f′(x)=ex+xex=ex(x+1),
∴切线斜率k=f′(1)=2e,
∴f(x)在(1,e)处的切线方程为y-e=2e(x-1),即y=2ex-e,
∵y=2ex-e与坐标轴交于(0,-e),($\frac{1}{2}$,0).
∴y=2ex-e与坐标轴围成的三角形面积为S=$\frac{1}{2}×e×\frac{1}{2}$=$\frac{e}{4}$.
故答案为:$\frac{e}{4}$.

点评 本题考查了导数的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知点A(a,0),点P是双曲线C:$\frac{{x}^{2}}{4}$-y2=1右支上任意一点,若|PA|的最小值为3,则a=-1或2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{1}{2}$ax2-x-m(m∈Z).
(Ⅰ)若f(x)是增函数,求a的取值范围;
(Ⅱ)若a<0,且f(x)<0恒成立,求m最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=$\frac{π}{3}$,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上,$\frac{{A}_{1}M}{{A}_{1}D}$=λ.若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.
(Ⅰ)在棱PB上是否存在一点Q,使用A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.
(Ⅱ)求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若m<n<0,则下列不等式中正确的是(  )
A.$\frac{1}{n}>\frac{1}{m}$B.|n|>|m|C.$\frac{n}{m}+\frac{m}{n}>2$D.m+n>mn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,an=2an-1+1(n≥2,n∈N*)且a1=2.
(Ⅰ)证明:数列{an+1}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代数学家刘徽(如图1)在学术研究中,不迷信古人,坚持实事求是,他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟盒方盖”:一正方体相邻的两个侧面为底座两次内切圆柱切割,然后剔除外部,剩下的内核部分(如图2).如果“牟盒方盖”的主视图和左视图都是圆,则其俯视图形状为下列几幅图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推.要求计算这50个数的和.
(Ⅰ) 将下面给出的程序框图补充完整:
①i<=50;
②p=p+i.
(Ⅱ)根据程序框图写出程序.

查看答案和解析>>

同步练习册答案