精英家教网 > 高中数学 > 题目详情
8.已知椭圆$\frac{{x}^{2}}{3}$+y2=1,斜率为2的动直线与椭圆交于不同的两点A、B,求线段AB中点的轨迹方程.

分析 设A(x1,y1),B(x2,y2),记线段AB的中点为(x,y).代入椭圆方程,由作差,结合中点坐标公式和直线的斜率公式,化简可得轨迹方程,注意中点在椭圆内,求得x的范围即可.

解答 解:设A(x1,y1),B(x2,y2),记线段AB的中点为(x,y).
则$\frac{{{x}_{1}}^{2}}{3}$+y12=1,$\frac{{{x}_{2}}^{2}}{3}$+y22=1,
两式作差得,$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{3}$+(y1-y2)(y1+y2)=0,
因直线AB斜率为2,代入y1-y2=2(x1-x2)得,
$\frac{1}{3}$(x1+x2)+2(y1+y2)=0,
又x1+x2=2x,y1+y2=2y,即有x+6y=0,
联立$\left\{\begin{array}{l}{x+6y=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$解得x=±$\frac{6\sqrt{13}}{13}$,又线段AB的中点在椭圆内部,
故所求的轨迹方程为:x+6y=0(-$\frac{6\sqrt{13}}{13}$<x<$\frac{6\sqrt{13}}{13}$).

点评 本题考查椭圆的方程和性质,主要考查椭圆的方程的运用,注意运用点差法和中点坐标公式以及直线的斜率公式,考查运算能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知x>0,y>0,2x+y=3,则xy的最大值等于$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(2,0),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+λ$\overrightarrow{b}$垂直,则λ的值等于(  )
A.-6B.-2C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在某次选拔比赛中,六位评委为A,B两位选手打出分数的茎叶图如图所示(其中x为数字0~9中的一个),分别去掉一个最高分和一个最低分,A,B两位选手得分的平均数分别为a,b,则一定有(  )
A.a>bB.a<b
C.a=bD.a,b的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足PF=AF,则$\frac{b^2}{a^2}$-2(lnb-lna)的范围是[$\frac{3}{4}$-ln$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设0<x<1,且logax<logbx<0<cx<dx<1,则(  )
A.a<b<c<dB.b<a<c<dC.c<d<a<bD.c<d<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}$=1(a>0),过x轴上一点Q(t,0),且斜率为k≠0的动直线l交椭圆E于A、B两点,A′与A关于x轴对称,直线BA′交x轴于点P,当t=0,k=$\sqrt{2}$时,|AB|=$\frac{4\sqrt{15}}{5}$.
(1)求a;
(2)若t≠0,则|OP|•|OQ|是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2$\sqrt{3}$,a+b=6,$\frac{acosB+bcosA}{c}$=2cosC,则
c=(  )
A.2$\sqrt{7}$B.4C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对140名学生用系统抽样的方法抽取20人的样本,将学生编号1-140号,按序号一次分成20组,第15组抽取的四102号,那么第二组抽取的号码为11.

查看答案和解析>>

同步练习册答案