精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\sqrt{3}$sin2x-2cos2x,下面结论中错误的是(  )
A.函数f(x)的最小正周期为π
B.函数f(x)的图象关于x=$\frac{π}{3}$对称
C.函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到
D.函数f(x)在区间[0,$\frac{π}{4}$]上是增函数

分析 由三角函数公式化简可得f(x)=2sin(2x-$\frac{π}{6}$)-1,由三角函数的图象和性质,逐个选项验证可得.

解答 解:f(x)=$\sqrt{3}$sin2x-2cos2x
=$\sqrt{3}$sin2x-1-cos2x=2sin(2x-$\frac{π}{6}$)-1,
由周期公式可得T=$\frac{2π}{2}$=π,选项A正确;
由2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
故当k=0时,可得函数一条对称轴为x=$\frac{π}{3}$,选项B正确;
g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到y=2sin2(x-$\frac{π}{6}$)-1=2sin(2x-$\frac{π}{3}$)-1的图象,
而不是f(x)=2sin(2x-$\frac{π}{6}$)-1的图象,选项C错误;
由kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤kπ+$\frac{π}{2}$可得$\frac{1}{2}$kπ-$\frac{π}{6}$≤x≤$\frac{1}{2}$kπ+$\frac{π}{3}$,k∈Z,
∴函数的单调递增区间为[$\frac{1}{2}$kπ-$\frac{π}{6}$,$\frac{1}{2}$kπ+$\frac{π}{3}$],
显然f(x)在区间[0,$\frac{π}{4}$]上是增函数,选项D正确.
故选:C.

点评 本题考查三角函数恒等变换,涉及三角函数的图象和性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,解答下列问题:
(1)已知a1+a2+a3=12,与a4+a5+a6=18,求a7+a8+a9的值;
(2)设a3=1012与an=3112且d=70,求项数n的值;
(3)若a1=1且an+1-an=$\frac{1}{2}$,求a11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足a1+a3=8,a2+a4=12.
(Ⅰ)求数列{an}的前n项和为Sn
(Ⅱ)若$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{999}{1000}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-ax2,且函数f(x)在点(2,f(2))处 的切线的一个方向向量是(2,-3).
(1)若关于x的方程f(x)+$\frac{3}{2}$x2=3x-b在区间[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数b的取值范围;
(2)证明:$\sum_{k=2}^{n}$$\frac{1}{{\frac{1}{2}k}^{2}+f(k)}$>$\frac{n-1}{2(n+1)}$(n∈N*,且n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图的程序框图,输出的C的值为(  )
A.3B.5C.8D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的k值为(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ln(1+x).
(Ⅰ)若曲线y=f(x)在点(0,f(0))处的切线方程为y=g(x),当x≥0时,f(x)≤$\frac{x(1+tx)}{1+g(x)}$,求t的最小值;
(Ⅱ)当n∈N*时,证明:$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>-\frac{1}{4n}+ln2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在样本的频率分布直方图中,一共有m(m≥3)个小矩形,第3个小矩形的面积等于其余m-1各小矩形面积之和的$\frac{1}{4}$,且样本容量为100,则第3组的频数是(  )
A.10B.20C.25D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.把长为l的铁丝折成一个面积为8的直角三角形,当l取最小值时,直角三角形的斜边长为$4\sqrt{2}$.

查看答案和解析>>

同步练习册答案