精英家教网 > 高中数学 > 题目详情
12.若数列{an}的前n项和为Sn=n2-3n+1(a∈N*),则该数列的通项公式为an=$\left\{\begin{array}{l}{-1,n=1}\\{2n-4,n≥2}\end{array}\right.$.

分析 首先根据Sn=n2-3n+1求出a1的值,然后利用an=Sn-Sn-1求出当n≥2时,an的表达式,然后验证a1的值,最后写出an的通项公式.

解答 解:∵Sn=n2-3n+1,
当n=1时,a1=S1=1-3+1=-1,
∴an=Sn-Sn-1=n2-3n+1-[(n-1)2-3(n-1)+1]=2n-4(n≥2),
∵当n=1时,a1=-1≠2,
∴an=$\left\{\begin{array}{l}{-1,n=1}\\{2n-4,n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{-1,n=1}\\{2n-4,n≥2}\end{array}\right.$

点评 本题主要考查数列递推式的知识点,解答本题的关键是利用an=Sn-Sn-1(n≥2)进行解答,此题难度不大,很容易进行解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,则k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({2,-3})$,向量$\overrightarrow c$满足$({\overrightarrow c+\overrightarrow a})∥\overrightarrow b,\overrightarrow c⊥({\overrightarrow a+\overrightarrow b})$,则$\overrightarrow c$用基底$\overrightarrow a,\overrightarrow b$的线性表示为$\frac{1}{9}\overrightarrow{b}-\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cos(\frac{π}{2}-β),sin(\frac{π}{2}-β))$,若$\overrightarrow a•\overrightarrow b=3sin(α-β)$,则$\frac{tanα}{tanβ}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,圆C的方程为x2+y2-2x=0
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(2)设直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数),若直线l与圆C交于A,B两点,且$|AB|=\sqrt{3}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,函数y=|tanx|cosx(x∈[0,$\frac{π}{2}$)∪($\frac{π}{2}$,π])的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α终边落在点(1,3)上,则$\frac{sinα-cosα}{sinα-2cosα}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件A,“摸得的两球同色”为事件B,则P(B|A)为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的S值为(  )
A.3B.-6C.10D.-15

查看答案和解析>>

同步练习册答案