精英家教网 > 高中数学 > 题目详情
2.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,则k=$\frac{1}{4}$.

分析 作出不等式组对应的平面区域,根据面积比是1:2,即可确定k的值

解答 解:作出不等式组对应平面区如图(三角形ABC部分),A(0,1),B(1,-1),
∵直线y=k(x+1)过定点C(-1,0),
∴C点在平面区域ABC内,
∴点A到直线y=k(x+1)的距离d=$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$,
点B到直线y=k(x+1)的距离d=$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$,
∵直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,
∴2×$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$=$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$,
解得k=$\frac{1}{4}$;
故答案为:$\frac{1}{4}$

点评 本题主要考查二元一次不等式组表示平面区域以及三角形的面积的应用,利用数形结合是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若3sinα-4cosα=5,则tan(α+$\frac{π}{4}$)=(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若$cos(π-α)=\frac{4}{5}$,α是第三象限的角,则$sin(α+\frac{π}{4})$等于(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.0B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设双曲线  $\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的一条渐近线方程为3x-2y=0,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,动圆x2+y2-4$\sqrt{2}$xcosα-4ysinα+7cos2α-8=0(α∈R,α为参数)的圆心轨迹为曲线C.
(I)求曲线C的方程;
(Ⅱ)已知点P在曲线C上运动,以O为极点,x轴的正半轴为极轴建立极坐标系,若直线l的极坐标方程为2ρcos(θ+$\frac{π}{3}$)=3$\sqrt{5}$,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.四棱锥P-ABCD的底面ABCD为平行四边形,且AB=2,BC=1,AC=2,记平面PAD与平面PBC的交线为m,平面PAB与平面PDC的交线为n,则m与n所成的锐角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{7}{32}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a,b,c∈R,且a>b,则(  )
A.a2>b2B.a3>b3C.$\frac{1}{a}$$<\frac{1}{b}$D.ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若数列{an}的前n项和为Sn=n2-3n+1(a∈N*),则该数列的通项公式为an=$\left\{\begin{array}{l}{-1,n=1}\\{2n-4,n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案