精英家教网 > 高中数学 > 题目详情
11.设a,b,c∈R,且a>b,则(  )
A.a2>b2B.a3>b3C.$\frac{1}{a}$$<\frac{1}{b}$D.ac>bc

分析 根据题意,由基本不等式的性质依次分析选项,即可得答案.

解答 解:根据题意,依次分析选项:
对于A、当a=1,b=-2时,有a2<b2,故A错误;
对于B、由不等式的性质可得:若且a>b,则a3>b3,B正确;
对于C、当a=1,b=-2时,$\frac{1}{a}$>$\frac{1}{b}$,故B错误;
对于D、当c≤0时,ac>bc不成立,故D错误;
故选:B.

点评 本题考查不等式的性质,关键要掌握不等式的性质以及使用条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f'(x)g(x)<f(x)g'(x),f(x)=axg(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有穷数列$\left\{{\frac{f(n)}{g(n)}}\right\}$(n=1,2,…,10)中,任意取前k项相加,则前k项和不小于$\frac{63}{64}$的k的取值范围是(  )
A.[6,10]且k∈N*B.(6,10]且k∈N*C.[5,10]且k∈N*D.[1,6]且k∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,则k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1中,A1B⊥平面ABC,且AB⊥AC.
(1)求证:AC⊥BB1
(2)若AB=AC=A1B=2,M为B1C1的中点,求二面角M-AB-A1平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-ax+b)ex(a,b为常数,e是自然对数的底).
(1)当a=-1,b=1时,求f(x)的单调区间;
(2)当b=a+1时,函数f(x)有两个极值点x1,x2(x1<x2).
①求实数a的取值范围;
②若a>0且mx1e${\;}^{{x}_{2}}$-f(x2)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为(  )
A.3$\sqrt{3}$B.6$\sqrt{3}$C.9$\sqrt{3}$D.18$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({2,-3})$,向量$\overrightarrow c$满足$({\overrightarrow c+\overrightarrow a})∥\overrightarrow b,\overrightarrow c⊥({\overrightarrow a+\overrightarrow b})$,则$\overrightarrow c$用基底$\overrightarrow a,\overrightarrow b$的线性表示为$\frac{1}{9}\overrightarrow{b}-\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cos(\frac{π}{2}-β),sin(\frac{π}{2}-β))$,若$\overrightarrow a•\overrightarrow b=3sin(α-β)$,则$\frac{tanα}{tanβ}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件A,“摸得的两球同色”为事件B,则P(B|A)为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案