精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期为π,且其图象过点($\frac{5π}{12}$,0),则f(x)的图象的一条对称轴方程为(  )
A.x=$\frac{π}{3}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{6}$D.x=-$\frac{2π}{3}$

分析 由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式,再利用余弦函数的图象的对称性,求得f(x)的图象的一条对称轴方程.

解答 解:若函数f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期为π,
则$\frac{2π}{ω}$=π,求得ω=2,f(x)=cos(2x+φ).
根据它的图象过点($\frac{5π}{12}$,0),可得2•$\frac{5π}{12}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=kπ-$\frac{π}{3}$,∴φ=-$\frac{π}{3}$,
f(x)=cos(2x-$\frac{π}{3}$).
令2x-$\frac{π}{3}$=kπ,可得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
则f(x)的图象的一条对称轴方程为x=$\frac{π}{6}$,
故选:C.

点评 本题主要考查由函数y=Acos(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值;余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象如图所示,f(x0)=-f(0),则正确的选项是(  )
A.φ=$\frac{π}{6}$,x0=1B.φ=$\frac{π}{6}$,x0=$\frac{4}{3}$C.φ=$\frac{π}{3}$,x0=1D.φ=$\frac{π}{3}$,x0=$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}满足:a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n-1}}$=2n,n∈N*
(1)求数列{an}的通项公式an
(2)设bn=${log}_{\sqrt{2}}$an,数列{anbn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)+b(ω>0)的最小正周期为π,最大值为2$\sqrt{2}$.
(1)求实数ω,b的值,并写出相应的f(x)的解析式;
(2)是否存在x∈[0,π],满足f(x)=2$\sqrt{2}$,若存在,求出x的值;若不存在,说明理由;
(3)求函数F(x)=f(x)-f(x-$\frac{π}{4}$)的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinθ+2cosθ=0,计算:2sin2θ-3sinθcosθ+5cos2θ=$\frac{19}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求(x+2$\sqrt{y}$)5的二项展开式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:${C}_{n}^{1}$+2${C}_{n}^{2}$+3${C}_{n}^{3}$+…+n${C}_{n}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等比数列,a2,a4的等差中项为4,a5,a7的等差中项为8$\sqrt{2}$,则a1的值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\sqrt{2}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.经过点M(2,1)作直线l交双曲线x2-$\frac{y^2}{2}$=1于A,B两点,且M为AB的中点,则直线l的方程为(  )
A.4x+y+7=0B.4x+y-7=0C.4x-y-7=0D.4x-y+7=0

查看答案和解析>>

同步练习册答案