精英家教网 > 高中数学 > 题目详情
19.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组频数累计频数频率
[10.75,10.85)660.06
[10.85,10.95)1590.09
[10.95,11.05)30150.15
[11.05,11.15)48180.18
[11.15,11.25)
[11.25,11.35)84120.12
[11.35,11.45)9280.08
[11.45,11.55)9860.06
[11.55,11.65)10020.02
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?
(Ⅳ)从[11.35,11.45)∪[11.55,11.65)中抽取两个产品,直径分别记作为x,y,求|x-y|<0.1的概率

分析 (Ⅰ)由题意根据频率分步表的性质,可得完整的频率分步表.
(Ⅱ)根据完整的频率分步表,画出频率分布直方图.
(Ⅲ)据上述图表,求出产品直径落在[10.95,11.35)范围内的频率,即为所求.
(Ⅳ)所有的抽法有${C}_{10}^{2}$=45种,其中满足条件的抽法有${C}_{8}^{2}$+${C}_{2}^{2}$=29种,由此可得所求事件的概率.

解答 解:(Ⅰ)由题意根据频率分步表的性质,可得完整的频率分步表:

分组频数累计频数频率
[10.75,10.85)660.06
[10.85,10.95)1590.09
[10.95,11.05)30150.15
[11.05,11.15)48180.18
[11.15,11.25)72240.24
[11.25,11.35)84120.12
[11.35,11.45)9280.08
[11.45,11.55)9860.06
[11.55,11.65)10020.02
(Ⅱ)画出频率分布直方图:

(Ⅲ)据上述图表,产品直径落在[10.95,11.35)范围内的频率为 0.15+0.18+0.24+0.12=0.69=69%,
估计产品直径落在[10.95,11.35)范围内的可能性为69%.
答:略.
(Ⅳ)所有的抽法有${C}_{10}^{2}$=45种,其中满足条件的抽法有${C}_{8}^{2}$+${C}_{2}^{2}$=29种,
故|x-y|<0.1的概率为 $\frac{29}{45}$.

点评 本题主要考查频率分步表的性质,频率分步直方图的画法,古典概率的计算公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数y=f(x)定义在R上,当x>0时,f(x)>1,对任意m,n∈R,f(m+n)=f(m)f(n) 
(1)证明:f(x)在R上单调递增;
(2)若f(2)=9,解方程[f(x)]2+$\frac{1}{9}$f(x+3)-1=f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是(  )
A.$\frac{π}{4}$B.1-$\frac{π}{4}$C.$\frac{1}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有一粒质地均匀的正方体骰子,6个表面点数分别为1、2、3、4、5、6,甲、乙两人各掷一次,所得点数分别为ξ1,ξ2,记η=ξ12
(1)求η>0的概率;
(2)求η>2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果执行如图的程序框图,那么输出的S=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(2),f(3)f(4)f(5)并猜测f(n)的表达式;
(2)求证:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$$<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(Ⅰ)求椭圆E的方程;
(Ⅱ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数g(x)=x-$\sqrt{3x+1},h(x)=\frac{1}{2x}+\sqrt{3x+1}$,那么函数f(x)=g(x)+h(x)的解析式是f(x)=x+$\frac{1}{2x}$,(x≥-$\frac{1}{3}$,且x≠0).

查看答案和解析>>

同步练习册答案