精英家教网 > 高中数学 > 题目详情
4.证明:如果两个相交平面都与第三个平面垂直,那么它们的交线也垂直于第三个平面.

分析 由题意,画出图形,写出已知求证,然后利用面面垂直的性质以及线面平行的判定定理和性质定理证明.

解答 已知α⊥γ,β⊥γ,α∩β=l.
求证:l⊥γ.
证明:在α内作直线m垂直于α与γ的交线,在β内作直线n垂直于β与γ的交线,
∵α⊥γ,β⊥γ,
∴m⊥γ,n⊥γ.
∴m∥n.又n?β,
∴m∥β.∴m∥l,∴l⊥γ.

点评 本题添加了在一个平面内垂直于交线的直线这样的辅助线.将问题转化为线面垂直,这是证法的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,抛物线C1:x2=2py(p>0)与椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个交点为T($\frac{4}{3}$,$\frac{1}{3}$),F(1,0)为椭圆C2的右焦点.
(1)求抛物线C1与椭圆C2的方程;
(2)设A($\frac{1}{2}$,$\frac{3}{2}$),过A作直线l交抛物线C1于M、N两点(M点在N点的左侧),l1、l2分别是过M、N且与抛物线C1相切的直线,直线l1,l2交于点B,直线l1与椭圆C2交于P、Q两点.
(Ⅰ)求证:B点在一条定直线上,并求出这条直线的方程;
(Ⅱ)设E(0,$\frac{2}{3}$),求△EPQ的面积的最大值.并求出此时B点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=alnx(a>0)的图象在x=1处的切线与圆x2+y2=b2(b>0)相切,则$\frac{1}{{b}^{2}}-\frac{1}{{a}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知k为实数,对于实数a和b,定义运算”*“:a*b=$\left\{\begin{array}{l}{{a}^{2}-kab,a≤b}\\{{b}^{2}-kab,a>b}\end{array}\right.$,设f(x)=(2x-1)*(x-1).
(1)若f(x)在[-$\frac{1}{2}$,0]上为增函数,求实数k的取值范围;
(2)若方程f(x)=0有三个不同的解,记此三个解的积为T,求T的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{ax}}{x}$(a∈R).
(1)若曲线f(x)在x=1的切线与直线x+e2y+1=0垂直,求曲线f(x)在x=1处的切线方程;
(2)若f(x)在[1,2]上最小值为e,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知2sin2x-cos2x+sinxcosx-6sinx+3cosx=0,求$\frac{2co{s}^{2}x+2sinxcosx}{1+tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,从棱长为6cm的正方体铁皮箱ABCD-A1B1C1D1中分离出来由三个正方形面板组成的几何图形.
(1)记CC1的中点为E,求异面直线EB1与A1C1所成角的大小;
(2)如果用图示中这样一个装置来盛水,那么最多能盛多少cm3体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O为△ABC的外心,AB=2a,AC=$\frac{2}{a}$,∠BAC=120°,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则3x+6y的最小值为$6+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,∠A=60°,∠A的内角平分线AD将BC分成BD、DC两段,若向量$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+λ\overrightarrow{AC}(λ∈{R})$,则∠B=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案