精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,底面ABCD为直角梯形BC//A为正三角形,MPD中点.

1)证明:CM//平面PAB

2)若二面角P-AB-C的余弦值为,求直线AD与平面PBD所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)根据题意,取的中点为,连接,利用中点可得平面平面,进而可得结论;

2)根据题意,取的中点,连接,计算可得,进而可得平面,建立坐标系,利用空间向量计算即可.

1)证明:取的中点为,连接,如图:

由题意,为直角梯形,中点,

∴平面平面,而平面平面

平面.

2)由题意,取的中点,连接,如图:

为等腰直角三角形,为正三角形,则,即平面,即即二面角的平面角为,则,又,则,由余弦定理可得,则,即,而,所以,平面,由为直角梯形,

所以,以分别为轴建立空间直角坐标系,则,则

设平面的一个法向量为

,即,取,所以

所以,平面的一个法向量为

所以

即直线与平面所成的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,且

(Ⅰ)求数列的通项,及前项和

(Ⅱ)请你在数列的前4项中选出三项,组成公比的绝对值小于1的等比数列的前3项,并记数列的前n项和为.若对任意正整数,不等式恒成立,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点的直线l与抛物线交于AB两点,以AB为直径作圆,记为,与抛物线C的准线始终相切.

1)求抛物线C的方程;

2)过圆心Mx轴垂线与抛物线相交于点N,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间和极值;

2)当时,若不等式恒成立,求实数的取值范围;

3)若存在,且当时,,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级为了解学生在家参加线上教学的学习情况,对高三年级进行了网上数学测试,他们的成绩在80分到150分之间,根据统计数据得到如下频率分布直方图:

若成绩在区左侧,认为该学生属于网课潜能生,成绩在区间之间,认为该学生属于网课中等生,成绩在区间右侧,认为该学生属于网课优等生

1)若小明的测试成绩为100分,请判断小明是否属于网课潜能生,并说明理由:(参考数据:计算得

2)该校利用分层抽样的方法从样本的两组中抽出6人,进行教学反馈,并从这6人中再抽取2人,赠送一份学习资料,求获赠学习资料的2人中恰有1人成绩超过90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到直线的距离为,过点的直线交于两点.

1)求抛物线的准线方程;

2)设直线的斜率为,直线的斜率为,若,且的交点在抛物线上,求直线的斜率和点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,,且的最小值为,则________,若P为边AB上任意一点,则的最小值是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C的极坐标方程为.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数)

(1)若,求曲线C的直角坐标方程以及直线l的极坐标方程;

(2)设点,曲线C与直线 交于A、B两点,求的最小值

查看答案和解析>>

同步练习册答案