精英家教网 > 高中数学 > 题目详情
6.已知数列{2n}的前n项和为an,数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,数列bn的通项公式为bn=(n+1)(n-3),则bnSn的最小值为(  )
A.-2B.-$\frac{9}{4}$C.-3D.-$\frac{3}{2}$

分析 利用等差数列的前n项和公式、“裂项求和”、二次函数的单调性即可得出.

解答 解:an=$\frac{n(2+2n)}{2}$=n2+n,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
∴bnSn=(n+1)(n-3)×$\frac{n}{n+1}$=n2-3n=$(n-\frac{3}{2})^{2}-\frac{9}{4}$,
∴当n=1或2时,bnSn取得最小值为-2.
故选:A.

点评 本题考查了等差数列的前n项和公式、“裂项求和”、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}是递增数列,且a2a5=32,a3+a4=12,数列{bn}满足b1=1,且bn+1=2bn+2an(n∈N*
(1)证明:数列{$\frac{{b}_{n}}{{a}_{n}}$}是等差数列;
(2)若对任意n∈N*,不等式(n+2)bn+1≥λbn,总成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3+$\frac{3}{2}({a-1}){x^2}$-3ax+b,x∈R在(0,1)处的切线方程是y=-9x+1.
(1)求a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若函数f(x)在区间[m,2]上的最大值为28,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x<y与$\frac{1}{x}<\frac{1}{y}$同时成立,则(  )
A.x>0,y>0B.x>0,y<0C.x<0,y>0D.x<0,y<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=(x-x2)ex,给出以下几个结论:
①f(x)>0的解集是{x|0<x<1};
②f(x)既有极小值,又有极大值;
③f(x)没有最小值,也没有最大值;
④f(x)有最大值,没有最小值.其中判断正确的是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
 甲 6080 70 90 70 
 乙 8060 70 80 75 
问:甲、乙谁的平均成绩好?谁的各门功课发展较平衡?(  )
A.甲,甲B.乙,乙C.甲,乙D.乙,甲

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,2),$\overrightarrow{c}$=(0,1).
(Ⅰ)求实数λ和μ,使$\overrightarrow{c}$=$λ\overrightarrow{a}$$+μ\overrightarrow{b}$;
(Ⅱ)若$\overrightarrow{AB}$=-$\overrightarrow{a}$+3$\overrightarrow{c}$,$\overrightarrow{AC}$=4$\overrightarrow{a}$-2$\overrightarrow{c}$,求向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等比数列{an}中,a1=1,a5=4,则a3=(  )
A.±2B.2C.-2D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足$\left\{\begin{array}{l}1≤x-y≤2\\ 2≤x+y≤4\end{array}\right.$,则z=log2(4x+2y+2)的最大值是4.

查看答案和解析>>

同步练习册答案