分析 (Ⅰ)由已知表示出$λ\overrightarrow{a}$$+μ\overrightarrow{b}$的坐标,利用向量相等的性质解答;
(Ⅱ)将$\overrightarrow{AB}$,$\overrightarrow{AC}$的坐标表示出来,利用数量积公式求夹角.
解答 解:(Ⅰ)$\overrightarrow{c}$=$λ\overrightarrow{a}$$+μ\overrightarrow{b}$=(λ+μ,2μ),
所以$\left\{\begin{array}{l}{λ+μ=0}\\{2μ=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=-\frac{1}{2}}\\{μ=\frac{1}{2}}\end{array}\right.$;
(Ⅱ)$\overrightarrow{AB}$=-$\overrightarrow{a}$+3$\overrightarrow{c}$=(-1,2),$\overrightarrow{AC}$=4$\overrightarrow{a}$-2$\overrightarrow{c}$=(4,-2),
故cosθ=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{-4-6}{\sqrt{10}×\sqrt{20}}=-\frac{\sqrt{2}}{2}$,
又θ∈[0,π],
所以$θ=\frac{3π}{4}$.
点评 本题考查了平面向量的坐标运算、向量相等的性质以及利用数量积公式求向量的夹角.
科目:高中数学 来源: 题型:选择题
| A. | 相切 | B. | 相交 | C. | 相离 | D. | 随α,β的值而定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -$\frac{9}{4}$ | C. | -3 | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 220 | B. | 210 | C. | 110 | D. | 105 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 4$\sqrt{2}$ | C. | 8$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com