精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,现给出如下结论:
①f(0)•f(1)>0;②f(0)•f(1)<0;③f(0)•f(3)>0;④;f(0)•f(3)<0;
⑤f(x)的极值为1和3.其中正确命题的序号为
 
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:根据f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,确定函数的极值点及a、b、c的大小关系,由此可得结论
解答: 解:求导函数可得f′(x)=3x2-12x+9=3(x-1)(x-3)
∴当1<x<3时,f'(x)<0;当x<1,或x>3时,f'(x)>0
所以f(x)的单调递增区间为(-∞,1)和(3,+∞)单调递减区间为(1,3)
∴1和3是函数的极值点,不是极值,故⑤错误,
所以f(x)极大值=f(1)=1-6+9-abc=4-abc,
f(x)极小值=f(3)=27-54+27-abc=-abc
要使f(x)=0有三个解a、b、c,那么结合函数f(x)草图可知:
a<1<b<3<c
及函数有个零点x=b在1~3之间,
所以f(1)=4-abc>0,且f(3)=-abc<0
所以0<abc<4
∵f(0)=-abc
∴f(0)<0
∴f(0)f(1)<0,f(0)f(3)>0,故②③正确.
故答案为:②③.
点评:本题考查函数的零点、极值点,解不等式,综合性强,利用数形结合可以使本题直观.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:函数f(x)=x+
1
x
在区间[1,+∞)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-
2
3

(1)求证:f(x)在R上是减函数.
(2)求函数在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(q+p)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+…+
f2(1007)+f(2014)
f(2013)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个直角三角形的两条直角边长为a,b,求该直角三角形内切圆的面积,试设计求解该问题的算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,且其左视图是一个等边三角形,则这个几何体的体积为(  )
A、12+
2
B、36+
2
C、18+
4
D、6+
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是一个公差大于零的等差数列,且a3a6=55,a2+a7=16,数列{bn}的前n项和为Sn,且Sn=2bn-2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
an
bn
,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知∠A=150°,a=3,则其外接圆的半径R的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数f(x)=2|x|的图象,并根据图象判断f(
x1+x2
2
)与
f(x1)+f(x2)
2
的大小.

查看答案和解析>>

同步练习册答案