精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,M为C上除长轴顶点外的一动点,以M为圆心,$\frac{{\sqrt{2}}}{2}$为半径作圆,过原点O作圆M的两条切线,A、B为切点,当M为短轴顶点时∠AOB=$\frac{π}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的右焦点为F,过点F作MF的垂线交直线x=$\sqrt{2}$a于N点,判断直线MN与椭圆的位置关系.

分析 (I)利用△OMA(△OMB)为等腰直角三角形,求出b=1,通过离心率求解a,然后求解椭圆方程.
(II)(i)MF垂直于x轴,验证直线MN与椭圆相切;
(ii)MF不垂直于x轴,设M(x0,y0),则${k_{MF}}=\frac{y_0}{{{x_0}-1}},{k_{NF}}=\frac{{1-{x_0}}}{y_0}$,转化求解直线MN方程,与椭圆方程联立,转化证明直线MN与椭圆相切.

解答 解:(I)由题意,△OMA(△OMB)为等腰直角三角形,因为圆M的半径为$\frac{{\sqrt{2}}}{2}$,所以b=1,
又因为$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,所以$a=\sqrt{2}$,此时椭圆的方程为$\frac{x^2}{2}+{y^2}=1$;
(II)(i)MF垂直于x轴,则$M({1,±\frac{{\sqrt{2}}}{2}}),N({2,0}),{k_{MN}}=±\frac{{\sqrt{2}}}{2}$,
此时直线MN的方程为$y=±\frac{{\sqrt{2}}}{2}({x-2})$,代入椭圆方程得:x2-2+1=0,
所以直线MN与椭圆相切;
(ii)MF不垂直于x轴,设M(x0,y0),则${k_{MF}}=\frac{y_0}{{{x_0}-1}},{k_{NF}}=\frac{{1-{x_0}}}{y_0}$,
直线NF的方程$y=\frac{{1-{x_0}}}{y_0}({x-1})$,令x=2,解得$y=\frac{{1-{x_0}}}{y_0}$,即得$N({2,\frac{{1-{x_0}}}{y_0}})$.${k_{MN}}=\frac{{\frac{{1-{x_0}}}{y_0}-{y_0}}}{{2-{x_0}}}=\frac{{1-{x_0}-{y_0}^2}}{{({2-{x_0}}){y_0}}}$,由M(x0,y0)在椭圆上,得${y_0}^2=1-\frac{x_0^2}{2}$,
代入${k_{MN}}=\frac{{1-{x_0}-{y_0}^2}}{{({2-{x_0}}){y_0}}}=\frac{{1-{x_0}-({1-\frac{x_0^2}{2}})}}{{({2-{x_0}}){y_0}}}=-\frac{x_0}{{2{y_0}}}$.
得直线MN方程为$y-{y_0}=-\frac{x_0}{{2{y_0}}}({x-{x_0}})$,
与椭圆方程联立得:$\left\{\begin{array}{l}y-{y_0}=-\frac{x_0}{{2{y_0}}}({x-{x_0}})\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.⇒({1+\frac{x_0^2}{2y_0^2}}){x^2}-2\frac{x_0}{y_0^2}x+\frac{2}{y_0^2}-2=0$,
化简得:${({\frac{1}{y_0}x-\frac{x_0}{y_0}})^2}=0$,所以此时直线MN与椭圆相切,
综合(i)(ii),直线MN与椭圆相切.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={0,2,4},B={x|3x-x2≥0},则集合A∩B的子集个数为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80)[80,90),[90,100]的分组作出频率分布直方图如同1,并作出样本分数的茎叶图如图2(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中的x,y的值;
(Ⅱ)分数在[90,100]的学生设为一等奖,获奖学金500元;分数在[80,90)的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过抛物线y2=2x焦点的直线交抛物线于A,B两点,若AB的中点M到该抛物线准线的距离为5,则线段AB的长度为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(ax+b)+ex-1(a≠0).
(Ⅰ)当a=-1,b=1时,判断函数f(x)的零点个数;
(Ⅱ)若f(x)≤ex-1+x+1,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC三个内角A,B,C的对边,2b=$\sqrt{3}$asinB+bcosA,c=4.
(Ⅰ)求A;
(Ⅱ)若D是BC的中点,AD=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校对学生的思想品德、学业成绩、社会实践能力进行综合评价,思想品德、学业成绩、社会实践能力评价指数分别记为x,y,z,每项评价指数都为1分、2分、3分、4分、5分五等,综合评价指标S=x+y+z,若S≥13,则该学生为优秀学生.现从该校学生中,随机抽取10名学生作为样本,分为A,B两组,其评价指数列表如下:
                                                                A组
学生编号A1A2A3A4A5
评价指数(x,y,z)(3,4,3)(4,3,4)(4,4,2)(4,3,5)(4,5,4)
B组
学生编号 B1B2B3B4B5
评价指数(x,y,z)(3,5,3)(4,3,2)(5,4,4)(5,4,5)(4,5,3)
(1)从A,B两组中各选一名学生,依次记为甲、乙,求乙的综合评价指标大于甲的综合评价指标的概率;
(2)若该校共有1500名学生,估计该校有多少名优秀学生.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,∠BAC的平分线交BC边于D,若AB=2,AC=1,则△ABD面积的最大值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于x的方程52x-5x+1+a=0在(0,1)有实数根,则实数a的取值范围是(0,$\frac{25}{4}$].

查看答案和解析>>

同步练习册答案