精英家教网 > 高中数学 > 题目详情
6.已知线段PQ=1,A1是线段PQ的中点,A2是QA1的中点,A3是A1A2的中点,A4是A3A2的中点,…,An是An-2An-1的中点,则PA5的长为$\frac{21}{32}$.

分析 根据题意逐一得到A1A5=$\frac{1}{32}$,PA1=QA1=$\frac{1}{2}$,问题得以解决

解答 解:由题意可得PA1=QA1=$\frac{1}{2}$,
A1A2=$\frac{1}{2}$QA1=$\frac{1}{4}$,
A2A3=A1A3=$\frac{1}{2}$A1A2=$\frac{1}{8}$,
A3A4=$\frac{1}{2}$A2A3=$\frac{1}{16}$,
A4A5=A3A5=$\frac{1}{2}$A3A4=$\frac{1}{32}$,
∴PA5=PA1+A1A3+A3A5=$\frac{1}{2}$+$\frac{1}{8}$+$\frac{1}{32}$=$\frac{21}{32}$



故答案为:$\frac{21}{32}$

点评 本题考查了归纳推理的问题,关键找到规律,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.某学校共3000名学生,其中高一年级900人,现用分层抽样的方式从三个年级中抽取部分学生进行心理测试,已知高一年级抽取了6人,则样本容量为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={x|y=lg(x-2)},B={y|y=2x,x≥0},则(∁RA)∩B=(  )
A.(0,2)B.[0,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\left\{\begin{array}{l}{x^3}+e,x≤0\\ \frac{e^x}{x},x>0\end{array}$,则方程f(f(x))=$\frac{e^3}{3}$的根的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设二次函数f(x)=ax2+bx+c(a≠0)中的a、b均为整数,且f(0)、f(1)均为奇数,则(  )
A.方程f(x)=0有两个不相等的整数根B.方程f(x)=0没有整数根
C.方程f(x)=0至少有一个整数根D.方程f(x)=0至多有一个整数根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持
不支持
合计
(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.则使得sin2B+sin2C=msinBsinC成立的实数m的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.
(1)求证:QP⊥AC;
(2)当二面角Q-AC-P的大小为120°时,求QB的长;
(3)在(2)的条件下,求三棱锥Q-ACP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点M(x,y)满足不等式组$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,点P(-4a,a)(a>0),则当$\overrightarrow{OP}•\overrightarrow{OM}$最大时,点M为(  )
A.(0,2)B.(0,0)C.(4,6)D.(2,6)

查看答案和解析>>

同步练习册答案